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PREFACE

The theory of complex manifolds is a vast topic so any short introduction must of necessity
be highly selective. My aim in these lectures has been to present, in a manner intelligible to
physicists, the mathematics relevant to the compactification of superstrings. The principal
aim being to present the basic facts relevant to the geometry and topology of Calabi-Yau

spaces.

I assume a familiarity with complex analysis of one variable and with elementary real
differential geometry. There are many good texts on differential geometry but a concise
treatment similar in spirit to these lectures may be found in the relevant chapter of the
book by Hawking and Ellis[1]. A more detailed reference is the two volume work by
Kobayashi and Nomizu[2]. There are also many texts on complex manifolds. The book by
Yano(3] employs the more concrete notation favoured by physicists. The books by Morrow
and Kodaira[4] and Kodaira[5] are very good references. The latter being a particularly
good account of the theory of deformations of complex structures. A concise and readable
review of elementary homology and cohomology as well as the geometry of characteristic
classes is provided by the article by Eguchi, Gilkey and Hansen[6]. Finally the book by
Griffiths and Harris [7] is the definitive text on algebraic geometry.
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I. INTRODUCTION

We begin by recalling some facts about real manifolds. Heuristically a manifold is a space
that is locally like R,,.

Deflnition: A C" n-dimensional manifold M is a topological space together with an
atlas, that is a collection of charts (Uj,z;) where the U; are open subsets of M and the
z; are one to one maps of the corresponding U; to open subsets of R, such that

(i) the U; cover M i.e. M =U; U;

(ii) if U; N Uy is non-empty then the map z:ja:k"l:xk(Uj NUg) = z;(UjNUg)isa CT
map of an open set in R, to an open set in R,

The content of the definition is that within each U; we can choose coordinates x;" (m =
1,...,n) such that where two coordinate patches U; and Uy overlap the zl* are C7

functions of the zy

i = fir(ze). (1.1)
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Definition: A manifold M is orientable if there exists for M an atlas {Uj, z;} such that
for every non-empty U; N Uy the Jacobian g—((—i% is positive.

Deflnition: A manifold is Hausdorff if for any two points p, ge M with p # q there exist
open sets V, and V, such that peV,, ¢eVg and V, NV, = 0.

It is hard to picture spaces that are not Hausdorff but an example will be given shortly.

Definition: A manifold is compact if every atlas contains a finite refinement. That is
if every atlas {Uj, z;};es contains a subatlas {Uj,z;}jex which consists of only finitely
many Uj; but which still satisfies properties (i) and (ii) from Definition 1.

Loosely speaking, compactness corresponds to being closed or finite. The surface of a
sphere is a compact space but R, is non-compact. However, we have not yet introduced a
metric so we do not yet know what “finite” means. Besides, the question of compactness
can be subtle. For example, the closed interval [0, 1] of the real line is compact while
the interval [0,1) which omits the endpoint is non-compact. (Consider the atlas {U.}
consisting of the open sets [0,1 — 1/n), clearly there is no finite refinement.) Another
example consists of the surface of revolution obtained by rotating the graph of e=*" about
the z-axis, this yields a surface that is non-compact but which has a finite area.

Definition: A manifold is paracompact if every atlas contains a countable refinement.

Loosely speaking, this means that the manifold may be infinite in volume, but that the
infinity is no worse than that of R,,.

Definition: Two manifolds are diffeomorphic if there is a differentiable and invertible
map between them. Real manifolds are considered to be equivalent if they are diffeomor-

phic.

It is important not to confuse the concept of a manifold with that of a metric. A ma-
nifold that is endowed with a metric is 2 Riemannian manifold which is not what we
have considered up to this point. We shall want to consider the possibility of a manifold
admitting different metrics so it helps to keep the concepts separate. A two-sphere and
the surface of an egg are diffeomorphic and hence equivalent as manifolds; however, if we
think of them as embedded in R; theén they have different metrics.

From now on, unless otherwise stated, all manifolds will be C>°, paracompact and Haus-
dorff.

We come now to the definition of a complex manifold.

Definition: A complex manifold is a topological space M together with a holomorphic
(i.e. analytic) atlas. That is a collection of charts (U}, z;) that are one to one maps of
the corresponding U; to C™ such that for every non-empty intersection U ;NUy the maps

’

-1 .
zjz, - are holomorphic.



The crucial difference between the definition of a complex manifold and the definition of a
real manifold is that the transition functions fjz which relate the coordinates in overlapping
coordinate patches U; and Uy

Z;“ = jk(zk) ‘ (1.2)

are now required to be holomorphic rather than C'*° . This means that the zf are functions
of the z; but not of their complex conjugates Z4. Since we can think of C™ as R?" we
see from the definition that every n-dimensional complex manifold is a 2n-dimensional rea}

manifold.

Some examples Wiil, perhaps, clarify some of the distinctions we have made:

(1) R™ and C™ are respectively real and complex manifolds.

(2) The n-sphere S™, which is the subset of R**! that satisfies the equation
n+1

> (@) =1 (1.3)

is a manifold. S2, for example, is topologically distinct from RZ; this distinction is reflected
in the fact that at least two coordinate patches are required to cover a two sphere.

The simplest way to achieve this is to project stereographically from the North and South
. .poles. We obtain in this way two coordinate patches U; = S?\N and U,; = S%\S.

N
(X Yq)
R2
S (X yy)
N (XQYZ) Rz
(X,Y5)
S



It is a simple matter to write down the transition functions on the overlap U, N U, =

SA\(NU S)

N (X2 y,)

A >Y,
X2
S (X,¥q) Yy -

T2 —Y2
(z1,91) = fr2(z2,92) = ( ) ) ~ 14
R B R Y
clearly the f;5 are C* functions. Note that if we set
z1 =121+ 1y, (1.5)
and
23 =Ty + 1y, (1.6)

then we can rewrite the transition function in the form
2 = f12(2'2) = 1/22. (17)

The transition functions are holomorphic functions on U; N U, since the points z! = 0
and z? = 0 have been excluded. Thus S? is also a complex manifold.

(3) This space is not a one-dimensional real manifold since there is no neighborhood of the
crossover point that looks like a subset of R!. ‘




Consider this space

x
(]
[=]

>y

EITI PR I PR

<
]
o

one’s first reaction is to declare it not to be a manifold for the same reason as the previ-
ous case. However, one could escape this objection by constructing the manifold in the
following way: take two lines as shown and identify points z = y for z,y < 0 but not for
z,y > 0. This construction produces a manifold. However the manifold is not Hausdorff
because r = - 0 is not the same point as y = 0 and yet there are no neighborhoods of
z = 0 and y = 0 which do not intersect.

(4) Complex projective space P,. This is the space of complex lines through the origin
in C™*1. More precisely, we take the space C"*1\{0},that is the set(z?!,z2,..., z"*+1)
where the z* are not all zero, and identify

(24, 2"y m AL, 2 (18)
for any non-zero complex A\. We can take the sets
U; = {+ £0) (1.9)
as coordinate neighborhoods and choose coordinates
m Zm
(r= = (1.10)
within each Uj. On the overlap U; N Uy we have
m_ 2" _ 2" [
(T = T %/ E= Ck' (1.11)



¢j* is a holomorphic function of (* on the overlap since neither z/ nor z* is zero there.
P, is a complex manifold of dimension n. It is a compactified form of C™ to which a
hyperplane has been added at infinity. We shall come to know P, well in what follows. P,
is covered by two coordinate patches U; and Uj. On these patches we have coordinates

52 1
on the overlap U; N U,
1 .
(1= 2 (1.13)

and we see that P; is the Riemann sphere S2.

(5) Somewhat easier to visualize than P, are the real projective spaces RP,. These are
the points of R"*!\{0} identified if they differ by a scale

(2, z? ...,:c"'“)zA(zl,m2,...,z“+1). (1.14)

b

RP, can be thought of as the set of straight lines through the origin in R™*'. We can
represent such a line by its points of intersection with the unit sphere. RP,, for example,
is a two sphere with opposite points identified :

RP, = 5%/27,. (1.15)

‘Altei‘natively we can think of it as a hemisphere with antipodal points of the equator
identified.

identify

RP, is compact. It is not orientable.

(6) Any orientable two-dimensional Riemannian manifold is a complex manifold.
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It is well known that for such a space it is possible, in a neighborhood of any point, to
choose coordinates such that the metric assumes the form

ds? = A(z,y)(dz* + dy?) (1.16)
settiﬁg z =z + 1y we have
ds? = A\%dzdz (1.17)

for all z in some coordinate patch U;. If U, is another coordinate patch that intersects

U, then we have also
ds® = pldwdd |, w=u+iv (1.18)

for some function u. Moreover, since the manifold is orientable we shall assume the Jaco-
bian g%:—::—’% is positive. On the overlap U, N U, we have

A\dzdz = pldwdio (1.19)
and also 5 5
: w w o _
dw = b?dz + -é-g-dz. (1.20)

Substituting into the relation above we find that

Ow Ow

55 =0 (1.21)

Thus w is either a holomorphic or an antiholomorphic function of z. If it were antiholo-
morphic then the Cauchy-Riemann equations (the real and imaginary parts of %—’;’- = 0)
would read

ou_ v ou_o
8z 9y’ 9Oy O

8(u,v) 6u>2 Bv)z

— L= =] - = 0 .

A(z,y) (31' dy) = (1.23)
which would contradict our assumption that the Jacobian is positive. Thus w is a holo-
morphic function of z and the manifold is a complex manifold.

(1.22)

hence we would have

Compact submanifolds of R™ (such as S™) provide many examples of compact real man-
ifolds. For application to physics we shall be especially interested in compact manifolds.
However, the following theorem shows that the situation is very different with respect to
c™.

Theorem: A connected compact analytic submanifold of C™ is a point.

9



By an analytic submanifold is meant a submanifold defined by analytic equations
77 = Zj(a:) where the Zj,j = 1,...,n are coordinates for C™ and the g™ m=1,...k

are local coordinates for the submanifold.

"The proof rests on the maximum modulus principle. Recall from the theory of one complex

variable that the modulus of a function f that is holomorphic in some open set U cannot
have a maximum (or a minimum) at an interior point p of U unless f is a constant
throughout U. The result extends to the case of several complex variables by applying
the one variable result to the lines through p (a line, being a one-dimensional complex
manifold is what is more usually referred to as the complex plane C).

Now suppose M is a complex manifold embedded in C". The coordinates ZJ of the
embedding space are holomorphic functions on M. Since M is compact, each |Z7| must
achieve a maximum somewhere on M hence each Z7/ must be a constant. M is a point.

There are, however, compact complex manifolds that are submanifolds of P,. P, is com-
pact (a fact that will be proved shortly) and all its complex submanifolds are compact.
By a celebrated theorem of Chow (not proved here) any submanifold of P, can be realized
as the zero locus of a finite number of homogeneous polynomial equations. An example is
the Fermat surface in Py defined by the equation

P+ + P+ + (PP =0, (1.24)
-Other examples of compact complex manifolds a.fe quotient manifolds of C'™,

6) The complex torus: Let G be the group generated by translation by 2n complex vectors
that are linearly independent over the reals

1 2 n
a_,-:(aj,aj,...,aj (1 95)
by = (b}, 0%,...,b7). -

Then C'*/G is a complex manifold.

There is an interesting example, due to Iwasawa, of a quotient manifold of C? that has a
nonabelian fundamental group. It is usual to think of C® as the set (21, 22, 2%), however
think of it instead as the group of matrices of the form

1 Z1 29
0 1 =23]. (1.26)
0 0 1

Let A be the discrete group of matrices of the above form for which (21, 22, z3) are complex
integers (i.e. of the form m + in with m and n integers). Then it is easy to check that
C®/A is a compact complex manifold. Its fundamental group is isomorphic to A which is
nonabelian. '

10



7) §?" is not a complex manifold for n > 1. The proof of this fact for S® was a long
standing problem which was settled only in 1969. By contrast §27+1 x 524+1 i3 3 complex
manifold. To see why, let us digress briefly to consider the Hopf fibration of S2°+1,

S52P*1 is the set of points (z!,...,2P*!) which satisfy the condition

p+1

Dl =1 (1.27)

However, we may also think of (2?,...,27*1) as the homogeneous coordinates of a point in
Pp. Thus we have a map 7 from S?»*! to P,. This map is many-one since if (z1,..., 2P
is a point of $?P*! then so is e'?(2!,..., 2?*!) for any ¥ and this defines the same point in
P,. w projects an S! down onto each point in P,. Thus $??*1 ig a fiber bundle over P, in
which each fiber is a circle. Note that this construction demonstrates that P, is compact
since it is the image of a compact space under a continuous map.

Returning to the case at hand we can perform the Hopf construction for both §27+! and
S2g+1
m: Sy SUtL _, P x P, (1.28)

Each fiber is now an S! x §! = T2, Both the base manifold and the fiber are complex
manifolds so it is plausible that the fiber bundle is a complex manifold. Demonstrating
that this is in fact the case involves writing down an atlas and checking that the transition
functions are holomorphic. We leave this as an exercise.

8) Finally, we wish to make a simple but important observation. Two manifolds can be
different if regarded as complex manifolds and yet be diffeomorphic and hence equivalent
as real manifolds. As an example consider two two-dimensional tori

Ty ={(z,9) | (z,y) ® (¢ + 1,y) = (z,y + 1)}

1.29
T, = {(6m) | (€ ~ (€ +Lon) ~ (€1 +2)) (1:29)

These manifolds are diffeomorphic as real manifolds since
(&n) = (=,2y) (1.30)

defines a C™ map between them. Note, however, that if we set z = z + wand ( =€+
then we cannot write { as a holomorphic function of z. We have

z . (1.31)

and it is not possible to eliminate the z.

11



II. DIFFERENTIAL GEOMETRY

This section is a telegraphic review of (mostly real) differential geometry and the exterior
calculus. These concepts will be basic to our understanding of the geometry and topology
of complex manifolds when we return to them in §IV.

Tangent and Cotangent Spaces

A vector is understood abstractly as the tangent vector to a curve \: z™ — z™(t) at a
point p.

More formally a vector is a linear differential operator that acts on scalar functions.

V= (%)A- (2.1)

In the coordinate system z™

__dz™ Of _dz™ 9
Y= Ve (2:2)

The tangent space at p,T,(M) is the space of all vectors defined at p- A basis for
Tp(M) is {azim} .

An arbitrary vector VeTp(M) can be written in the form

0

az™

Vv=vym (2.3)
and the coefficients V™ are the components of V in the basis { 5%,,—}. The utility of this
definition is that with respect to a new coordinate system " = z" (™) we have by use

of the chain rule,

i

5} Jz* 0 ¢ 0
Vm — m — n

dom = Gamoaw ) B (24)

and we recognize the familiar transformation rule for the transformation of vector compo-
nents ,
Oz

Vﬂl —_ m .
Oz™ (2:3)

The cotangent space Ty (M) is the vector space that is dual to Tp(M). We denote by
{dz™} the base of covectors that is dual to { 52} that is, if we denote the inner product
between T,(M) and T, (M) by angular brackets, the {dz™} satisfy the relation

m O\ _m
<d3: ,azn>-—5n. (2.6)

12



The general ueT, (M) has the form
U =uUpdz™ 2.7)

the un,, then automatically have the appropriate transformation law under a change of
coordinates.

Tensor Fields

A tensor of type (k, £) is defined by a straightforward extension of the above

d

Ozms’

T=Tm™ . d™®..Qd™Q ®...0 (2.8)

Oz™

Metric

The metric is a positive definite (we will not here consider spaces of indefinite metric)
inner product on Tp(M). Given two vectors X and Y in T,(M) we write this inner product
as g(X,Y). The metric is bilinear in its arguments, thus the inner product is defined by
giving the values of the inner products between basis elements

9 9\ _
g Bzm ' dzn ) dmn- (29)

This equation defines g,5,. Thus

m 6 n 0 myn
9(X.Y) ~9(X Frethd 31:") = gma XY (2.10)
In fact, we can write
g =gmnd$m®dzn- (211)

Differential forms

In differential geometry and in topology, a distinguished role is played by tensors that are
totally skew symmetric because of their interpretation as elements of area and of volume.
Take z and y to be cartesian coordinates in the plane and define

dz Ady = —;—(d:c ®dy —dy @ dz) = —dy A dxz. , (2.12)

In polar coordinates
z =rcosd y =rsind (2.13)

13



we have

dz A dy = (cosddr — rsinddi) A (sinddr + r cos ¥ddJ)
= rcos?ddr A d9 —rsin®Idd A dr (2.14)
=rdr A dJ.

We recognize this as the transformation law for area elements. Like Moliére's bourgeois
gentil homme we are unaware that we speak forms daily. dz A dy is what we mean when
we use dzdy to denote the area element in a two-dimensional integral. The calculus of

differential forms is an elaboration of this simple fact.

A p-form is a totally skew symmetric covariant tensor of rank p. Let AP(z) be the set of
p forms at z and let C'*°(AP) be the space of smooth p-forms. AP(z) is a vector space and

has a basis :
{dz™* Adz™* A...Adz™} my<mz<...<my, (2.15)

where

1 )
dzr™ A Ad™? = ;J—'{sum of even permutations of dz™ ®...® dz™>

(2.16)

— sum of odd permutations}.

A zero form is a function and a one form is a covariant vector. The dimension of A? is
n!/p!(n — p)! which is also the dimension of A"~?. p cannot assume a value greater than n
since in the basis element dz'! ,dz™* at least one factor would be repeated and the basis
element would vanish. OQur convention for the components of a p-form a, is that “
1 m m m 4
ap = Eamlmz...mpdi’: YAdz™* A ... Adz™r (2.17)

with am, .. .;m, skew symmetric.

We can use the wedge product to combine a p-form with a g-form to yield a p + ¢ form
ap A B,

1
ap ABy = —=m; . m,Bnyndx™ A AT Adz™ AL Adz™. (2.18)

We see that
ap, A, = (—-1)”,&, A ap. (2.19)

Exterior Derivative

Exterior differentiation is essentially the process of taking the curl of a skew symmetric
tensor. More formally the exterior derivative d is a map from the space of p-forms to the

space of p + 1 forms
d: C(AP) — C=(APH), (2.20)

14



On zero forms
da , . :
da = ’a";r;d.’r . (2.21)

Oag
oz™

On one forms

d(azdz™) = dz™ A dz™. (2.22)

On two forms 5
d(anrdz™ A de") = S da™ A dz™ A do”. (2.23)

ete.

The convention is that the new dz goes in front. Note firstly that these expressions are
covariant because we may replace the partial derivatives by covariant derivatives since the
Christoffel symbols will cancel out owing to the complete skew-symmetry of the basis forms.
Note secondly the simple but important fact that when iterated the exterior derivative gives
zero

d* =0. (2.24)
For example, starting with a zero form
Oa 0%«
d = d n T eemmee— m n
d?z d (32:" z ) Bm"‘ax"dz Adz (2.25)

4 which vanishes by the antisymmetry of the basis elements.
A simple example which illustrates these considerations is provided by the exterior calculus
on R3. As representative differential forms we take
Qg = f 3 (2.26)
ay = uydr! 4 uydz? + uzds?, (2.27)

There are three independent basis two forms in three dimensions dz?Adz3, dz® Adz!, dz! A

dz?

ap = widz? Adz® + wydz® Adz! + wadz! A dz?, (2.28)
az = hdz! A dz? A dz®. (2.29)
In the following operations we recognize quantities that are familiar from vector calculus
aj A ag = (uqwq + usw, + uzwsy)dz! A dz? A dz® ' (2.30)
day = -g—;f%dxl A dz*
5} 1 ‘
= E;jkﬁ (-‘Ssggmdze A d.”l,‘m) (2.31)

8w1 8‘21]2 awS
dag = (axl + o2 + 8:03) dz' A dz? A d2®. (2.32)

15



Stoke’s Theorem

In the language of forms, Stoke’s theorem may be stated in a very concise manner: If M )
is a p-dimensional manifold with boundary M, we have

/ dap_1=/ Qap_i. (2.33)
M, oM,

In this form Stoke’s theorem contains many familiar results. Consider the relation for
p=1,2,3 in turn.

p=1;M is a line, OM = {a, b}, say, consists of the endpoints and « is a zero form so we

have )

| =56~ ta (2.34)

p=2

0A, O0OA, m n m

/M (&—m ~ San ) dz™ Adz" = LM Andz (2.35)

p=3

Ow; Ow; Ow; dz' Adz? Adz® — dz? 3 3 1 1 2

7 + 57 + 523 ' Adz /\ z° = aM(wl T Adz” +wedz’ Adz” +widr! Adz?).
| ' (2.36)

We see that Stoke’s theorem also contains Gauss’ theorem as well as the fundamental
theorem of differential calculus.

Hodge *

We have seen that, in three dimensions, exterior multiplication leads to both vector and
scalar products. This is due to the fact that both one forms and two forms correspond
to vectors, this in turn is due to the fact that 3 = 2 + 1 which is of course special to
three dimensions. To generalize this concept we introduce the notion of duality which is
formalized by the Hodgex. The Hodge# is 2 map from p forms to n — p forms

#:CP(AP) = CP(A™P) (2.37)
defined by its action on basis elements

x(dz™ A ... Adz™r)
1

k k k kn
(n_p)!g TR g PERy v kykpyy - kn AT PFLA L A dT S, (2.38)

i
*g

Exercise: Show that ++w, = (—1)p("_p)wp. &

16



With the aid of * we can define an inner product on the space of real forms

(ap: Bp) = /ap A *f3p. (2.39)

It is easy to show that the inner product is symmetric i.e. that (ap,3p) = (Bp, @p) and
also that

1
(ap, Bp) = ] /am1 - Bmime g3 dzt AL A dz (2.40)

Given an inner product we are in a position to define the adjoint, di, of the exterior
derivative

dl: C=(AP) = c (AP (2.41)

such that
(atpy dBp1) = (dap, B,1). (2.42)

We start with (ap,dB,-1) and integrate by parts
(a,d8) = [ a8 A+a
= f{d(ﬁ A xa) — (=1)P718 A dxa}. (2.43)

We will assume that M is compact and has no boundary, 9M = 0, then the first term
under the integral vanishes by Stoke’s theorem. Hence

(a,dB) = (—I)P/ﬂ A dxa

= (=1)Ptr(n=p) /ﬁ A #(xd*a). | (2.44)
From the last equality we identify dl as given by
df = (=1)P=p g, (2.45)
For n even, and all p, this reads '
dt = *d*, n even _ (2.46)
while for n odd
df = (=1)Pxd*, n odd (2.47)

Exercise: Show that, for a form

1
w = —’wml_._mx,d:z:m1 A...Adz™
y2

17



dTw has components given by

1

P
de =T

vk Wkmy..m, dz™? A ... Adz™". O

The adjoint dl shares with d the important property that its square is zero

dldl = wdx vde = (=172 4 g2, _ . (2.48)

Hodge deRham Operator

The Hodge-deRham operator is a natural second order differential operator that acts on
forms and generalizes the concept of the Laplacian. In fact, it is often referred to as the
Laplacian in the mathematical literature even though it is not in general equal to the
covariant Laplacian

A: CP(AP) — C™(AP) (2.49)

A=ddt +dltd, (2.50)

Exercise: Show from the definition that

(Aw)

my .A.mp

= —Vkawml...m,, ~ka[m1wkm,...m,] - éP(P ~ DRjkmym,w’* mg...mp]-
For the conventions regarding the Riemann tensor, see §4. O
A p-form is said to be harmonic if it is annihilated by A

Aw =10 (2.51)

from the definition of A this is equivalent to

(ddl +dfdw =0 (2.52)

- and hence
(w, (dd! + dfd)w) = 0 (2.53)
(dfw, dfw) + (dw, dw) = 0. (2.54)

Since the inner product is positive definite we see that a form is harmonic if and only if it

is both closed
dw =0 (255)

18



and co-closed
dtw =0, (2.56)

Hodge’s Theorem

Hodge has shown that for a compact manifold without boundary that has a positive definite
metric p-form admits a unique decomposition into harmonic, exact and co-exact parts

w=a+dB+ dfy. (2.57)

To prove uniqueness is easy, for if some forz_n w were to admit two decompositions of this
type, their difference would also be of this type. Thus, it suffices to show that if

0O=a+di+dly (2.58)

for some 3,7 and harmonic « then each term separately vanishes. To this end operate on
the equation with d. We find

ddfy=0
(v.ddly) =0 (2.59)
(dly,dfy) =0 |
dt’)f = 0.

Similarly we find df = 0 and hence also a = 0,

A distinguished role in topology is played by closed forms. By reasoning analogous to that
above it is easy to see that the co-exact part of such a form must vanish. A closed form
can always be written as

w=a+dp (2.60)

with a harmonic. An éxact form is always closed since ddf = 0. It is of interest to inquire
under what circumstances the converse is true i.e. when is a closed form exact? Since a
harmonic form is never exact this is equivalent to asking when a closed form has nonzero
- harmonic part. This question is perhaps unfamiliar because, as is well-known, in R, a
closed form is always exact dw = 0 implies there exists a 8 such that w = dB. On other
manifolds this is not true in general. The significance of harmonic forms is due to the
fact that locally any manifold looks like a subset of R,. Thus, given a closed form, w is
always possible within any one coordinate patch to find a § such that w = df. There is no
guarantee, however, that the §'s so defined will transform properly on the overlap regions.
In general, the §’s will not fit together to give a globally defined tensor field. Thus, the
existence of harmonic forms is related to the global properties of the manifold.

A simple example of a manifold which admits non-trival harmonic forms is T5.
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Let us consider the Hodge decomposition of one-forms for T,. We observe that there are
two harmonic one-forms dz and dy. Clearly dz and dy are zero modes of A which for this
case is just the negative of the ordinary Laplacian. Note also that dz and dy (despite the
notation) are not exact since z and y are not well-behaved functions on the torus (z and

y cannot be taken to be both single valued and continuous).
Consider an arbitrary smooth one-form on T%
w = u(z,y)dz + v(z,y)dy (2.61)

since u(z,y) and v(z,y) must be periodic functions of their arguments w admits a Fourier
decomposition '

W= (tmndZ + vpady)em=Hny), (2.62)

m,n=0

Exercise: Show that the Hodge decomposition of w takes the form

w = ugodz + vgody

' (MU + nvm,) {(motn
+d{~i) rr;;+n2 glmetny))

. '(numn—mvmn) i(mz+n
+df{—zz ? £ e'lmz+ dz A dy}

where ).’ denotes that the term with m = n = 0 is omitted. Note that this demonstrates
that there are precisely two linearly independent harmonic forms on 7. O

The example shows us that the topology of T} is different from that of R,. Can we say
more precisely what the existence of the harmonic forms is due to? We have seen that
given a closed form w we can always find a g such that locally

w = dgf. (2.63)

For simplicity let us suppose that w is a one-form and recall how f is constructed for the
case of R". We set

B(z) = /Iwm(ﬁ)dé"‘ (2.64)

the integral being taken along some path from a base point y to the point z. If this
construction is sensible i.e. independent of the path chosen from y to z then clearly we
have w,, = 0. For the case of R" the construction is sensible since the difference between
taking the two paths v, and 72, as in the figure, gives zero since a closed contour in R™ is
always the boundary M of some region M.
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Llw"szzlaM“:LMZO- (2.65)

This is what fails for the torus. The curves z = ¢ and y = y,, for example, are closed
contours which however are not the boundaries of any regions.

T, admits two harmonic forms because there are two basic curves which are not boundaries.
Basic here refers to the following. There are many curves on T} that are not boundaries.
Both z and 2/, say, in the figure have this property but we can consider z and 2’ to be
equivalent since the curve z — 2’ is a boundary. The key observation is that harmonic forms
are related to equivalence classes of surfaces that have no boundary with two such surfaces
being considered to be equivalent if they differ by a surface that is a boundary. The study
of Homology and Cohomology is an elaboration of this simple but essential fact.
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III. HOMOLOGY AND COHOMOLOGY

This section is a very brief review of elementary results in homology and cohomology which
will be needed later. We will follow, in part, the article. by Eguchi, Gilkey and Hanson|[6]
to which the reader is refered for a more thorough account.

Let M be a smooth connected manifold.

Definition: A p — chain a, is a sum

ap:ZCka (31)

where the N are smooth p-dimensional oriented submanifolds of M. It helps to think of
a, as something that can be integrated over. We will understand an integral over ap to be

given by
/E y =ch/M. (3.2)
Cie I¥E k

Different types of chain can be contemplated according to the nature of the coefficients
ck. If the coeflicients are real we have a real chain, if they are complex we have a
complex chain, if they are integers we speak of an integral chain and so on.

3 is the operation of associating with a manifold M its oriented boundary M. An essential
fact is that the boundary of a boundary is zero.

80M =0 (3.3)

For example, the boundary of a disc is a circle and the boundary of a circle is empty.
, : pty

We can extend the 0 operation to chains by linearity in the obvious way

dap = ) c;dN; (3.4)

t

Thus, Oa, is a p — 1 chain.

Definition: A cycle is a chain with no boundary i.e. it is a chain zp such that
0z, =0 (3.9)

Definition: Let Z, be the set of cycles and let B, be the set of boundaries, more precisely
let B, be the set of p-chains which are the boundaries of (p+ 1)-chains

By ={ap | ap = 8ap11} (3.6)
‘The simplicial homology of M is the quotient set

Hy,=2,/B, (3.7)
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H, is the set of p-cycles with two cycles considered to be equivalent if they differ by a
boundary :.e.

a,, ~ ap + 66p+1 (38)

Let us return to the torus T; to illustrate these considerations. In the figure we have drawn
the torus embedded in R;

z and z' are cycles because they have no boundary and are not themselves boundaries. z
and z' are considered equivalent in H p because they differ by the boundary of U.

Similar considerations apply to the cycles w and w'.

g2 ///

NS 2cc o rrerrra sl d
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This figure illustrates a cycle u which is “trivial” because it is a boundary.

For the torus H, has two linearly independent elements which we can think of as z and w.

As an example, let us calculate the homology groups H,y(p = 0, 1,2) for T,. Consider first
H,. Zero chains.are points, and points have no boundary so a zero-chain is also a zero
cycle. Furthermore, any two points form the boundary of a curve.

Thus, if the manifold is connected, as it is in this case, all points are equivalent. Hy consists
of multiples of some representative point p. If our chains are real then Hj is equivalent to
the set of real numbers. We may write

Hy=R. (3.9)

H, consists of two independent cycles which we have called z and w; any element of H
can be expressed as a linear combination Az + pw which may be identified with the pair
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(A, ). Thus,
| Hi~2ROR (3.10)

The only two-chain without boundary is T itself and Hj consists of arbitrary multiples of
this so we have

H, =R (3.11)
H; is the same as Hy; this is required by duality as will become clear later.

Had we been given the homology groups H »(T2, R) we would have learnt from
Ho(T2,R) = R that the torus is connected (more generally dim Hy is the number of
connected components of the manifold) and from H 1(T2,R) = R ® R that there are two

independent one-cycles.

T; furnishes, in some ways too simple, an example the two cycles z and w which are
not homologous to zero are also not homotopic to zero. It is important, however, not
to confuse homology with homotopy since, in general, two manifolds may be homologous
without being homotopic. The figure gives the standard example:

z and 2z’ are homologous since z — 2 bounds the region between them. However, they are
not homotopic since z cannot be deformed into z' without breaking and reconnecting. On
the other hand, two manifolds that are homotopic are homologous since we can deform
one manifold into the other.

If G is afield say G = R, C, Z,, then the homology group H,(M,G) is a vector space over
G.

We turn now to cohomology.
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Definition: Let Z? be the set of closed p-forms

27 = {w, | dw, = 0} (3.12)

and let B, be the set of exact p-forms

B? = {v, | v, =dB,_,} (3.13)

We define the de Rham cohomology groups to the quotient of Z? by BP

H? = Z* /B? (3.14)

H? is the set of closed p-forms where two members are considered to be equivalent if they
differ by an exact form

Wp ™ wy + df,_y . (3.15)

The space H? is special because there are no (—1)-forms. H? is the space of constant
functions hence dim H? is the number of connected components of the manifold.

We have now defined two sets of vector spaces the de Rham cohomology groups consisting
of equivalence classes of closed forms and the previously defined homology groups H » Whose
elements are equivalence classes of surfaces with no boundary. deRham has proved two
classic theorems which show that the two vector spaces H, and H? are dual to each other

(and hence isomorphic).

In order to make the correspondence between the homology groups and the cohomology
groups let us introduce a product T(2p,w,) defined for any closed form w, and any cycle
zp € Hy, by

W(Zp’wp):/ Wp- (3.16)

P

m(2p,wp) is called a period. Note that r is in fact defined on H,® H? since we can replace
zp and w, by any member of their respective equivalence classes.

/ (wp+dap-1)=/ wp+/ dap—
zp+0a,_y zp Zp
+/ wp-{-/ day_y (3.17)
60.,_1 Bap_l
:/ wp

r
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since the last three integrals in the first equality vanish in virtue of Stoke’s theorem.

deRham’s Theorems

Theorem: Given a basis {z;} for H, and any set of periods v;,7 = 1,... ydim H, there
exists a closed p-form w such that 7(z;,w) = ;

Theorem: If all the periods of a p-form vanish then, w is exact.

If {2:} is a basis for H) and {w;} a basis for H? then given these theorems we see that the
period matrix m(z;,w’) is invertible.

Exé.mple: The homology of S™

dim Hy = 1, since S® is connected
dim H, =1, since H" is represented by the permutation. tensor
dimH, =0, for I1<p<n-1

Exercise: Show this directly from the equation Aw = 0 by consideration of [wAw. ¢

The importance of harmonic forms is that each cohomology class contains precisely one
harmonic form so for many purposes we may think of the harmonic form as representing the
cohomology class. We know that each cohomology class contains at least one harmonic form
in virtue of the Hodge decomposition (the harmonic form is zero if the same cohomology
class is trivial). To see that each cohomology class contains at most one harmonic form,
we simply suppose that some cohomology class contains two a and B, say. Since a and 8
are In the same cohomology class they differ by an exact form

a—f=dy (3.18)

but this implies that de'y must vanish and hence also that (7, dfdy) vanishes. It follows
that dy must vanish and that o and 8 must be equal.

As was remarked previously the exterior derivative of a form does not involve the metric.
However,

dpr = — = _1 0 kakmz___mpdzm’ A...Adz™r (3.19)
manifestly does depend on the choice of metric. Thus a cohomology class is a topological
invariant (since a form that is closed for one metric is closed for all metrics). Although
its harmonic representative will depend on (and hence vary with) the metric. Stated
somewhat differently, suppose we are given a manifold M , a cohomology group H and
two different metrics gmn and ¢!, then the harmonic representatives of H,w and w' say,
will be different for the two metrics. However, since both w and w' belong to H they will
always differ by an exact form.
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Perhaps the most basic topological numbers that can be associated with a manifold are

the Betti numbers
b, = dim H?. (3.20)

b, is the number of linearly independent harmonic p-forms which is equal to the number
of irreducible p-cycles.

The Euler characteristic can be defined as the alternating sum of the Betti-numbers

x =) (-1)%, (3.21)

p=0

Examples

(i) S™: We learn from the previous exercise that by = b, = 1 and bp=0for1<p<n-1.
It follows that

2, neven

x(5") = {O, n odd.

(3.22)
(ii) T™: A basis for the space of harmonic p-forms is furnished by
dr™ Adz™ A ... Adz™, myp<mp<...<my (3.23)
the number of such forms is n!/(n — p)!p! hence
() = 3 (-1
x(T") = 1) =(1-1)"=0. 3.24
S e =0y (3.24)

Product Manifolds

If oy is harmonic on a manifold M, and a3 is harmonic on a manifold M, then a; A a5 is
harmonic on M, x M,

dlay Aag) =day Aas +ay Aday =0 (3.25)

df(aq A ag) = 0. (3.26)

The set of all such forms a, A 8, with p+ q = k furnishes a basis for the harmonic k-forms
on M; x M, hence
be(My x Ma) = > by(M;)by(Mz) (3.27)

ptg=k
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This is the Kiinneth formula.

The Euler characteristic has the useful property that it is multiplicative for product man-
ifolds

ny+n2
X(Myx Mp)= D" > (=1)PF9b,(M;)by(Ma) (3.28)
k=0 p+qg=k

= S (~175(M) S (—1)9b,(M),

p=0 ¢=0

hence

x(My x M3) = x(My)x(My). (3.29)

Poincaré Duality

A p-form w 1s harmonic if and only if dw = dfw = 0. We also know that

dtw = (—1)Pr =P+l g (3.30)
hence :
*dfw = (~1)Pdxw (3.31)
and
wdw = (—1)Prr gl (3.32)

Since * is invertible (¥ = %1) we learn that w is harmonic if and only if *w is harmonic.
It follows that the spaces H? and H" P are isomorphic. Thus,

by = by, (3.33)
Consequently, x vanishes for spaces of odd dimension.
As a consequence of deRham’s Theorems we have the following result

Theorem: Given any p-cycle a there exists an (n — p)-form «, the Poincaré dual of q,

such that :
/ w = / alAw (3.34)
a M »

We know from deRham’s Theorems that, given a basis {z'} for H, there exists a dual basis
{w;} for H? such that

for any closed p-form w.

/z_ wj =6, . (3.35)

1
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We will now show that there also exists a basis {w’} for H*P with the property that
/ wAw; = 8. (3.36)
M
Let {v*} be some basis for H"~? and set
/ ViAw; = m';. (3.37)
M

Clearly it is sufficient to show that m?; is invertible since then {(m~!)*;17} is the desired
basis. Let us suppose that, on the contrary, m'; is not invertible. Then there exists a
nonzero vector k&7 which is a null vector of m? j

m' k7 = 0. (3.38)

Setting k = k’w; we have
/u"/\k.—.o L i=1,....5, (3.39)
M
But xk is in H™™? and is therefore a linear combination of the v!. Thus
(k, k) = / «kAk=0 (3.40)
M : .

which is impossible if & does not vanish.

Returning now to the original problem let

a=a;z' and w= viw; (3.41)

and define . _
a=aw (3.42)

then (3.34) is satisfied in virtue of the fact that both the left and right hand sides of the
equation are equal to a;v'.

Since w is closed « is defined up to an exact form. It is sometimes useful to think of a as
differing from an exact form by a distribution whose support is concentrated on the cycle
a.

Intersection Numbers
Let us return to T2 and the two basic cycles z and w.

Two cycles that are homologous to z and w, respectively, have the property that they
always intersect at least once. The figure shows that it is possible for the two cycles to
intersect more than once.
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However, by adopting a sign convention we can count two of the intersections as positive
and one as negative so that the net intersection number is one for any two cycles that are
cohomologous to z and w.

Initially we shall consider only cycles that have transverse intersection.

Definition: Two cycles a and b have transverse intersection if at each point p that
they have in common the tangent spaces T,(a), Tp(b) have no vector in common.

Let M be an n-dimensional manifold and let a and b be two cycles in M of complimentary
dimension (z.e. such that dima + dimb = n) which intersect transversely. At a point
p € aNb,Ty(a) admits an oriented basis (uy,...us), say, and T,(b) admits an oriented
basis (vks1,-..,0s). If the combined set (uy,...ug, visq,..., vp) forms an oriented basis
for Tp(M) then we define ip(a,b), the intersection number of a and b at p, to be +1. If
they do not form an oriented basis then we define i,(a, b) to be —1.

Definition: The intersection number, #(a,b), of a and b is defined by

#(a,b)= ) ip(a,b). | (3.43)

pE€and

As is easily seen, the intersection number #(a,b) vanishes if either a or b is a boundary.
It follows that #(a,b) depends only on the homology classes of a and 4. The intersection
number can also be expressed in terms of the Poincaré duals o and 3 of a and b.

#(a,b) = ./M alpB . (3.44)

which expresses the fact that we may think of « and J as being basically distributions that
‘are concentrated on a and b.
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IV. RIEMANNIAN MANIFOLDS

This section is a review of the formalism of curvature expressed in the language of differ-
ential forms. It is included largely to establish conventions.

Let e®,a =1,...,n, be a basis of one-forms
et =e* dr™ (4.1)

and let e, be the reciprocal basis of vectors

— m a
64 - ca axm (4.2)
such that
<e ey >= 6 (4.3)
or equivalently
(e.™) = (e*,)! (4.4)

For a physicist the formalism of curvature begins with a discussion of covariant differenti-
ation. Recall that the connection coefficients I'?, are defined by the relation

Vbec = I-‘bcaea . ' (45)

where V is short for e, ™ V.. (If the vectors €q correspond to a coordinate basis then the
connection coeflicients are the more usual connection coefficients r.m.

Equivalent to this is the relation
Fbca =< ea’ vbec >='— < Vbeav €c > (46)

it follows that the connection coefficients could be equivalently defined by the action of
the covariant derivative on a basis of one-forms

Viye® = =T %", A - (4.7)
Writing out the derivative explicitly and contracting with e® ,, we find
Omey —TmnTe®, = —Tp%eb e . (4.8)
Contracting this equation with dz™ A dz™ and rearranging gives
de® + iI‘bc P el = Tmnle® dz™ A dz™. (4.9)

Recall that a connection can be chosen in many ways. It is usual to restrict this freedom by
demanding (i) that the connection be metric compatible i.e. that the covariant derivative of
the metric vanish and (ii) that the connection coefficients I .. be symmetric in their lower
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indices. These two requirements uniquely determine the connection to be the Christoffel
connection {,,,}. In the following, however, demanding the symmetry of the connection
coeflicients turns out not to be useful so we shall not impose this requirement. Hence we
shall allow the possibility that the connection have non-vanishing torsion

Tomn = QF[mn]r. (4.10)

We shall, however, continue to demand that the connection be metric compatible. We
rewrite equation (4.9) in the form :

de® +w Aef=T* (4.11)

where
wac = Pbcaeb (4.12)

are the connection one-forms and

T° = %Tbc“eb A€

1 (4.13)
= §Tmnre“,.da:m Adz™
is the torsion two-form.

Exercise : Verifsr that w®, - (e Ve, ¥)dz™. o

The curvature tensor is defined such that for an arbitrary vector V¥,
(Vi ValVF + Tn ' VeVE = Ry * V0 (4.14)

By writing out the covariant derivatives we have the explicit expression
Run*t = 0T nt® — 0T me* + T *Tng” = TnFT e (4.15)

the curvature two — form R®, is defined in terms of the curvature tensor by the expres-

sion
1

R% = =Rmn®re®,e,%dz™ A dz™
P kS (4.16)
= (3,,,I‘n,k + I‘mrkI‘,d") e“keblda:"‘ Adz™.
A little algebra shows that this relation may be rewritten in the form
Ry =dw® + w®, AwS. (4.17)

In the mathematical literature it is usual to adopt (4.11) and (4.17) as definitions. Note
that care is required to avoid confusion between the curvature two-form and the Ricci
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tensor. The curvature two-form satisfies a differential identity that follows directly from
(4.17). It is easy to check that

dR*y +w* ARy — R Aw, =0 (4.18)

this is known as the Bianchi identity..
Exercise: Check that this is equivalent to the differential Bianchi identity
Rmnipgir] = 0. Y
e® and R?, are examples of forms that carry tangent space indices. It is useful to define a
covariant derivative that acts on such objects.
If v* is a set of differential forms labelled by a tangent space index a, we define
Du“'z dv® +w®, AP, (4.19)
If v% is a set of differential forms labelled by tangent space indices a and b then §ve define
Dvy = dvy + W AVE p—w AL, (4.20)

The definition extends to objects with any number of upper and lower indices in a familiar
way by including a term with a positive sign for every upper index and a term with a
- negative sign for every lower index. With this notation we find, by definition of w?,,

De*=T° (4.21)
while the Bianchi identity becomes

-DRab = u. (422)

Exercise : Show that under a change of frame
| e — e’ = g% eb
the new connection is related to the previous one by
W' =@ w (8719, + &% (dB7V)°,
and the new curvature two-form is given by

Rlab — _ac(@—l)dbRc d-

Show also that the covariant derivative of a matrix of forms v%y transforms according to
the rule

(Dv)'% = i’a.:(DV)Cct(‘I’~1)dt,- ¢
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V. COMPLEX STRUCTURES

Let M be an n-dimensional complex manifold and let {2#} be local coordinates on a
coordinate neighborhood U. We define a mixed tensor J,,* by

. 0 5]
J=1dz*® _6—2— — idzP az | (5‘1)

(where z# is shorthand for z#). In the following we shall refer to complex coordinates
z#,p =1,...,n and to real coordinates z™,m = 1,...,2n. The tensor It is called an
almost complex structure.

Theorem : J enjoys the following properties:

(i) J is a tensor i.e. the right-hand side of the definition is independent of choice of coor-
dinates.

(ii) J is real.
(iii) Tt T, P = —6,.7.

To prove (t) we simply recall from the definition of a complex manifold that wherever there
is a non-empty overlap U NV, the respective coordinates z# ,w” are analytic functions of
. .each other. Thus by the chain rule '

8 0z dw? 5 i

# = VD o — duph :
=" ® Oz¢  Jwv Jz# dw’ @ Ow?r dw? @ OwH (5.2)
hence
J = zdw“@i—d”®—g— 5
- dwr Y Owh’ (5.3)
Property (ii) is trivial since J = J but can be shown also by taking z# = z* +iy* so
a g
J=det @5 —dyt @ o (5.4)
which is manifestly real.
(iii) follows from the fact that
Ju' =18, Ti¥ = —i65" J,,'T’:O , Jp¥ =0. (5.5)

Thus in a complex basis

J= ( : _Oz) ‘ (5.6)



while in the real basis (z#,y*)

. 0 1
J = (_1 O). (5.7)

In either basis we see that J squares to minus the identity.

The burden of the theorem is that every complex manifold admits a globally defined
tensor which squares to minus the identity. Local existance is of course trivial since any
2n-dimensional real manifold looks locally like C™.

With the aid of the almost complex structure J,* we are able to define two projection
tensors ]

n 1 n : n n n N n
P."= -2-(5m -, Q'= 5(6"z +:J,..") (5.8)
It is straightforward to verify, using a matrix notation, that
P?=p, Q*=Q, PQ=0o, P+Q=1. (5.9)
In a complex basis we have
1 0 ‘ .
p= (1 9) | o0
and
0 0
Qz(o 1). (5.11)

The significance of P." and Q. is that they can be used to project out the holomorphic
and antiholomorphic components of tensors. Consider, for example, a one-form

P "updz™ ' (5.12)

we find that in terms of complex coordinates
Pruadz™ = u,dz *. ’ (5.13)
Definition : A complei manifold is Hermitean if it is endowed with a metric of the form
d:vé = gupdz*dz". (5.14)
The most general metric has also pure parts with two holomorphic and two antiholomorphic

indices
ds? = Gurdz?dz” + Guvdz?dz? + gp,—,dz[‘dzf'. (5.15)

Hermiticity is a restriction on the metric and not on the manifold. For if a manifold
admits any metric A, then it also admits the metric

1
Imn = é‘(hmn ‘Jr‘vakJnthkl) (516)
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which is positive definite if A, is and is moreover hermitean.

If gan 13 a hermitean metric it satisfies

gmn = 5T ke, | (5.17)
By multiplying this equation by J, ™ and writing
Tmn = J o gkn (5.18)
we find that Jg, is skew symmetric
Jmn = —Jum. (5.19)

Thus on a hermitean manifold the almost complex structure defines a natural two-form.
Almost Complex Manifolds

We have seen that a complex manifold always admits a globally defined mixed tensor J,_*
which squares to minus the identity. It is natural to inquire to what extent there is a
converse. If a real 2n-dimensional manifold M admits a globally defined tensor J,." which
squares to minus the identity is M then necessarily a complex manifold?

Definition : If a real manifold M admits a globally defined mixed tensor J,_* with the

property
It I ¥ = =6 F (5.20)

then M is an almost coniplex manifold.

Definition : If an addition the metric of the manifold has the property that
Imn = Jka,,!gkg . (5.21)

which is equivalent to

Jmn = —Jum (5.22)

then the metric is hermitean with respect to J and M is an almost hermitean manifold.
Even if M is only an almost complex manifold we can still define the projection tensors
1 ) 1 )
Pmn = —(6mn - ZJmn)! an = —(5mn +2Jmn)' (523)

These tensors permit a refinement of the exterior calculus. Given, say, a three-form w,
we can define projected components

Wi = PoiP,IP, Fuyjy

win) =3P, P, 1Q Fuwi (5.24)
WD =3P QI QFwiji

Wit = Qm QhQFwiji
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and the following decomposition of wmnr, according to type, is unique

Wimnr = 0G0 + ) + w12 4 L0, (5.25)

A k-form can be decomposed in an analogous way

w= Y wen, (5.26)

ptg=k

A form of definite type (p,q) is called a (p,¢)-form. As is straightforward to verify that
the exterior derivative acting on a (p, ¢)-form yields a linear combination of four forms of

different type

.dw(p,q) _ (du))(p—lyq+2) + (dw)(’”q“) + (dw)(p+1,q) +(dw)(”+2’q‘1). (5.27)

If J is in fact a complex structure then, the two terms at the ends of this expression
dwP=19+2) and dw(P+2:9-1) are absent.

We define operators 9 and 8 by

Hw (P — (dw)(P+1:9) :
P — (dw)(p,qﬂ) (5.28)
and we can think of 9 and 8 as the (1,0) and (0, 1) parts of d.

Let us return now to our question, when is an almost complex structure a complex struc-

ture? Consider the projection
0™ = P, Mdz" (5.29)

of the coordinate differentials. If M were a complex manifold then the ™ would be
expressible in terms of complex coordinates z# in the form

o™ = 9,mdz", - (5.30)

Our question divides into a local question (i) do there exist locally coordinates z# such

that
P, Mdz " = G“mdz“ ? (5.31)

and a global question (77) given a covering of M by local coordinate neighborhoods such
that (2) is true, are the coordinates z and w, say, in two coordinate patches that have
non-empty intersection holomorphic functions of each other?

To answer these questions it is useful to introduce the Niejenhuis tensor
k k k
Nt = Jii 7] J[ip']i]qJP;q' (5.32)
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Note that the Niejenhuis tensor does not depend on the choice of metric since the Christoffel
connections cancel so, in fact, the tensor could have been defined with partial derivatives.

Theorem :

(i) An almost complex structure J,2 is a complex structure if and only if the associated
Niejenhuis tensor vanishes.

(ii) If the Niejenhuis tensor vanishes then there exists a holomorphic atlas such that
T =146, , Ji¥=—i8" , J,7 =0, Jai¥ = 0. (5.33)
Let us seek a set of complex coordinates z# = z#(z). Then

ozk .
dz* = é%dz*’ (5.34)

inserting unity in the guise of (P." + Q.") on right-hand side of this equation we have

Oz¢ . - P R
dz# = a—i;Pdemk + %Q,ﬁdz". (5.35)

The left-hand side of this equation is a (1,0)-form as is the first term on the right hand
side. The second term on the right-hand side is a (0, 1)-form and so must vanish.

Oz#

557@,361::" = 0. (5.36)

We regard this equation as a differential equation for the complex coordinates z#. A
necessary and sufficient condition for this equation to be integrable is that the equation

azF .
5594 =0 (5.37)

should be integrable. Acting on this equation with leg%— we find

G2 z#

8zi0z!t

. 9z8 .
Qk]le + ‘a—:C‘JQk,Jszt =0 (5-38)

and taking the skew-symmetric part with respect to k and m the integrability condition
becomes
oz

4 . .
%’Q[k{]l]@m} =0. (5'39)
Now again insert unity in the guise of P." + Q." and use (5.37) again

ozt i .

527 5 Q14 Qumy =0 : (5.40)
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. . . B
This equation overconstrains %‘—;- unless

P Qu 1@ = 0. (5.41)

Finally, a little algebra shows that both the real and imaginary parts of this equation are
equivalent to the condition . .

Nem =0. ' (5.42)
To summarize so far: complex coordinates z# exist locally if and only if the Niejenhuis
tensor vanishes. It is necessary also to show that where two coordinate neighborhoods
overlap that the respective complex coordinates are holomorphic functions of each other.
Let us suppose that z# and w"” are two such sets of coordinates. A consequence of the
vanishing of the Niejenhuis tensor is that the projection Pndz™ is a (1,0)-form. Thus for

some functions §™, and ¢™,
07, dz" = o™ dwt. (5.43)

It follows that %‘:’: vanishes.

As for part (ii) of the theorem we return to (5.37) which we may write in the form

62“ . kaZ“
| oz +1J; ozF (5.44)
Note that in this form it is evident that (5.37) is just an n-dimensional version of the
Cauchy-Riemann equations. On contracting the equation with dz’ ® 5%-, we have
0z#* 9 o |
Kl et
J; tdz 32F 5.7 =1dz 55" (5.45)
If we complex conjugate the equation and subtract we find
i (0z¢ 0 09zF 0 9] - 0
kg3 = jdeP—e _ A B
J; “dzx (33:" i 3.F Bzf‘> idz £y vdz 57 (5.46)
or
.0 0 ; 0
kdpd = — jdab e _ ;4B
Jidz 5% = 1dz 327 idz 527 (5.47)

which is the statement that was to be proved.

The most celebrated example of an almost complex manifold which is not a complex
manifold is §%. On S° there is a naturally defined almost complex structure J_ " related
to the octonians. The almost complex structure squares to minus the identity but its
Niejenhuis tensor does not vanish. Proving that S® is not a complex manifold was a long
standing problem because, although it is easy to show that the almost complex structure
that derives from the octonians is non-integrable i.e. it has a non-zero Niejenhuis tensor,
it is much harder to prove that there does not exist some other almost complex structure
which is integrable.

Exercise: Adopting (5.28) as the definition of & for an almost complex manifold show
directly that the condition for 8 to square to zero is that the Niejenhuis tensor vanishes.
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VI. COVARIANT DERIVATES AND CURVATURE TENSORS ON A
HERMITEAN MANIFOLD

Recall that the Christoffel connection {,,} is uniquely determined by two requirements.
The first is that the metric be covariantly constant and the second is that the connection
be symmetric. When dealing with a complex manifold it is natural to require instead
that the complex structure J,," be covariantly constant as well as the metric. These two
conditions do not fully specify the connection. A unique connection is singled out by also
placing a requirement on the torsion Limap”

Theorem : On a hermitean manifold there is a unique connection called the hermitean
connection with the properties:

(i) The covariant derivative of the metric vanishes
(ii) The covariant derivative of the complex structure vanishes
(iii) The torsion ['[n)" is pure in its lower indices.

If gmn and J,,* are covariantly constant, then so are the projection tensors P,,* and Q™.

Consider the equation .
kamn = 0. (61)

The content of this equation is exhausted by taking (m,n) equal to (u,v) and (g, 7). The
first of these choices does not yield any information while the second leads to the condition

I'y,” =0 (6.2)
where k£ can be replaced by either & or . This leads to the conditions
~i

T, =0, T."=0. (6.3)

Consideration of the derivative of Q " leads to nothing new. Condition (iii) provides

further information on the mixed components of the connection since I. ¥ vanishes we

have also LAl
I‘ﬁny == 0 (64)

The relations we have together with their complex conjugates imply the vanishing of all
the mixed components of the connection. In other words, we learn that the hermitean
connection is pure in its indices.

To show existence and uniqueness, we solve for the connection in terms of the derivatives
of the metric. Consider the equation

vmgnr = amgnr - ankgkr - Fmrkgnk =0 (65)
and take (m,n,r) = (u,v, p), we find
Ougus — T "9ns =0 (6.6)
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and hence )
Ly =9"0,u9u5. (6.7)

It is straightforward to check that the vanishing of V,,J,, leads to the same relation.

Exercise : Let I'___* be an arbitrary connection on a complex manifold. Show directly
from the transformation properties of T',,,* under a holomorphic change of coordinates
that the mixed components of the connection are tensors. O

The fact that the hermitean connection is pure in its indices and has the simple form (6.7)
leads to a great simplification in the structure of the Riemann tensor. In fact we shall see
that the only nonzero components are those that are mixed in both the first and last pairs
of indices :.e. the only nonvanishing components are of the form

Rusps + Roups  Russp , Riuz,. (6.8)

To demonstrate this recall the explicit expression (4.15) for the Riemann tensor in terms
of the connection

Rmnkl = 5ml_‘nlk - an]-‘mlk + 1-‘rnrkrln,lr - Pnrkrmlr' (69)

First take (k,£) equal to (&, \) we see that every term on the right-hand side vanishes
owing to the fact that the connection is pure in its indices. Thus

Rmnxa =0, conj. : (6.10)

Thus in order for the Riemann tensor to be nonvanishing the last pair of indices must be
mixed. Consider now the components of the form R, "5 these also vanish in virtue of the
fact that the connection is pure in its indices. Finally consider the components

Rpunz\ = apI‘UAN + FppNFuAP - (;u — V) (611)

these are seen to vanish in virtue of relation (6.7). By again invoking the fact that the
connection is pure in its indices we find the following expression for the non-vanishing
components of the Riemann tensor

R;u’iﬁ& =—Rpup° = 0,05;5°. (6.12)
Associated with the Riemann tensor is the Ricci-form
R= %Rmnuﬂ“dx’" A dz®
=1iR,;; °dz* A d2” (6.13)
= 180 log g%

In the following we write conj. to denote that there is a similar quantity or relation which
may be obtained by complex conjugation.
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the last equality following from (6.12). Since 89 = —1d(8 — 8) we see that the Ricci-form
is always closed

dR = 0. (6.14)

At first it might appear that we ‘have shown that R is also exact but this is not so in
general since gjz‘ and hence (0 — 0) log g% 18 not a coordinate scalar. Thus (6.13) should
be regarded as a relation that holds within each coordinate patch Uj.

Exercise: Show directly that R is globally defined even though log g% is not. o

called the first Chern class and the factor of -1 reflects a convention concerning the
general definition of the higher Chern classes to which we shall return later. The im-
portance of ¢, is that it is an analytic invariant, that is, it is invariant under smooth
changes of the complex structure of the manifold. Consider the effect of a small variation
gmn — gmn + 8gmn in the metric of M. From (6.13) and the relation

1
6g‘2L = Eg%g"‘"égmn (6.16)
we have
cnB LD 1 A up
O0R = 100(g* bgus) = —-2—d[(5 —0)g""ég 5] (6.17)

Now g#”ég,5 is a coordinate scalar so the last equality shows that §R is exact even though

"R itself may not be. Thus a smooth variation of the metric changes R but not c1-
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VII. KAHLER MANIFOLDS
We have seen that a hermitean manifold is endowed with a natural two-form
JzéLmhmAaw (7.1)

Definition : A hermitean manifold is Kahler if the natural two-form is closed
dJ] =0. (7.2)
On a Kahler manifold J is often called the K#hler-form.

All one-dimensional complex manifolds are Kahler since dJ would be a three-form and
hence vanishes.

The fact that J is closed has profound consequences
dJ =98J +08J
= 10xgupdz"™ Ndz* A dz” — i05g,5d2* A dzP A d2”. (7.3)
The (2,1) and (1,2) parts of dJ must vanish separately, hence
angpfl = UufGckp
059us = 59,5 (7.4)

We learn that on each coordinate neighborhood U there exists a real scalar ¥;, known as
the Kahler potential, such that on Uj; '

Guv = auaD‘Pj» (7.5)
hence on U;

J =180p;. (7.6)

This equation is just a restatement of (7.4). It is important to note that the scalars
¢; cannot fit together on the overlaps U; N Uy to give a globally defined function if M
is compact. The metric is, of course, globally defined. What happens is that on some
non-trivial overlap U; N Uy the two Kahler potentials ¢ ; and yy are related by

pj =k + fik(2) (1.7)
with f;k(z) a holomorphic function. To see why this is so recall that

85 = —-;-d(a ~5) (7.8)
so that
T = —d(9- D)) (1.9)
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which, of course, ensures that dJ = 0. If (8 — d)y, were globally defined, J would also be
exact. However, J cannot be exact. This is most easily seen by considering the identity

JAITAN AT =i, 5 - Guopad2*rdz™ . dztndzPn

n factors

(7.10)

= grelttnet g oo Guas d2idz! . d2Rde

= i"nldet(g,;)dz'dzt .. . dz"d2".

gmn=< 0 g’“’) (7.11)

CGue = Gua (7.12)

it follows that detg,; is proportional to g7, the square root of det(gmz).

Now the metric has the form

and g,p is moreover hermitean

We see that n-fold product J A ... A J is proportional to the volume form. Thus, the

integral
[rnng

1s proportional to the volume of M. If J were exact, J = dA, we could replace one of the
J’s by dA and invoke Stoke’s theorem to show that the integral is zero.

In virtue of the identities (7.4) we see that the hermitean connection whose only non-zero

‘components are )
Th =9"0ugus , conj. (7.13)

is symmetric in its lower indices. Thus, for a Kahler manifold, the hermitean connection
coincides with the Christoffel connection. A defining property of the hermitean connection
is that Jmp, has vanishing covariant derivatives. Jo,,, is covariantly constant. In particular,
it has vanishing divergence

dty=o. (7.14)

Thus J is harmonic.

The prime example of a Kahler manifold is P,. As before, we may choose coordinate
neighborhoods U such that one of the homogeneous coordinates z7 is non-zero and we
can again use the '

I

m zm
G == (7.15)

as coordinates on U ;-

Set

n+41
¢; =log (Z IC}"V) : (7.16)
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On an overlap U; N Uy we have

¢
G =5 (717
7 C]k
and hence ' | ,
@j=r—log¢’, —log (¢’ (7.18)
this being so ) B
86(,0]- = B&pk. (7.19)
On P, we choose a metric (the Fubini-Study metric)
gmn = OmOnp;. (7.20)
This is well-defined in virtue of the above and induces the Kahler form
J =100p;. (7.21)

In order to complete the demonstration that P, is Kabhler, it remains only to check that
the metric we have introduced is positive definite.

Exercise : Show that on U; the metric that follows from (7.16) takes the explicit form

Impa = l (5mﬁ - Cm(ﬁ)
o

o
where
| o =1+
and we introduce a convention that will be useful later by writing (™ = (5 and (™ = (,,.
Check that this metric is positive definite. O

An example of a complex manifold that is not Kahler is $2P+! x §2¢+1 with g>1to
exclude the case of a torus. A Kaihler manifold has b, > 1 since the Kihler form is
harmonic. However for the case of $2P+! x §24+1 b, is zero. This follows from the fact
that a harmonic two-form on §%P+! x §24+! would admit a decomposition into a sum of

forms of the type
ay , arABy, B

with ay a harmonic two-form on the first factor, a; and 3, harmonic one-forms on their
respective factors and f#; a harmonic two-form on the second factor. By our earlier obser-
vations about the cohomology of spheres we know that ag, 31 and B, do not exist. Thus
b, = 0.

Another complex manifold which is not Kahler is the Iwasawa manifold from Section L.
The Iwasawa manifold is subset of C3 such that the points (21, 22,23) and (2,2}, 2%) are
identified whenever

1 2y =z} 1 my ma 1z zg
0 1 Zé = 0 1 m3 0 1 Z3 (722)
0 0 1 0 0 1 0 0 1
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for any set of complex integers m; = k; + t/;. Explicitly the identifications are

7y =z1 +my
z; =29+ my123 + my. (723)
zy =23+ my
An arbitrary point, thought of as a point in Rs, can always be brought by one of these
identifications to a point in the unit hypercube. We can think of this manifold as a twisted

torus. It is easy to see that there cannot exist a Kahler form for this manifold since a
putative Kahler form would have to be

d21 A dEl + d22 A dfz + d23 A d23 (724)

_ which 18 not respected by the identifications.

The properties that the curvature tensor enjoys on a Kahler manifold follow from those
on a Hermitean manifold. Additional simplifications follow from the fact that since the
torsion now vanishes, the curvature tensor enjoys the familiar symmetries.

Rmnrs = Rramn (725)
Rm{nrs] =0 (726)

- ‘Writing out the later identity with the indices (u7p) we find that R5ps 1s symmetrfc in

its holomorphic and antiholomorphic indices _

Ruﬂp& = Rpl'mt‘r = Ru&eﬁ (7.27)
The Ricci tensor ‘ :
Rmn = kakn (7.28)
has only mixed components
— g R — AR
Rus = 9" Raprxo = —9""Rusar (7.29)

the last equality following from (7.27). From (6.13) we identify the components of the
Ricci form as being those of the Ricci tensor, whence the name.

As we have seen, the Ricci form defines the first Chern class ¢;. The utility of ¢; can
be appreciated by considering the following question. Suppose there is given a Kahler
manifold M; under what circumstances does M admit a Ricci-flat metric? Suppose g,,,, is
any metric on M and suppose there exists for M a Ricci-flat metric Gran- The Ricci-forms
of gmn and gI,, both belong to c;

R(g) =R(¢') +dA (7.30)
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but, by hypothesis, g;,,, is a Ricci-flat metric so R(g’) vanishes, therefore R(g) must be
exact and ¢; must be the trivial cohomology class

c; =0 (7.31)
This is a necessary condition for M to admit a Ricci-flat metric.
Exercise : Show that the Ricci-form for P, with the Fubini-Study metric satisfies
R=—(n+1)J
where J is the Kahler form. o

The exercise shows that the Ricci form for P, with the Fubini-Study metric is harmonic S0
it is certainly not exact. ¢; is not trivial, hence Py cannot admit a Ricci-flat metric. The
necessity of the vanishing of ¢; for M to admit a Ricci-flat metric was noticed by Calabi
who conjectured that ¢; is the only topological obstruction. In other words, if ¢; vanishes
then there exists for M a Ricci-flat metric. This conjecture was a long standing problem
until it was proved by Yau. We shall not attempt a proof here and will merely be content
to state Yau’s theorem. ‘

Theorem: Given a complex manifold with ¢; = 0 and any Kahler metric g, with Kahler
form J, then there exists a unique Ricci-flat metric 9mn Whose Kahler J' is in the same
cohomology class as J.

We have seen that the curvature tensor of a Kihler manifold has a remarkably simple
structure. This structure and the role played by the Ricci-form are best understood in
terms of the holonomy group. » :

The holonomy group A associated with a d-dimensional manifold M (not necessarily
complex) is defined in the following way. Pick a point p of M and consider the effect of
parallely transporting a vector VJI6 from p back to p around a closed curve C.

In general, the vector V' obtained by this process will no longer coincide with V. Let us
suppose that C' is parametrized by a proper length parameter s that takes values in the
range [0,t] with z(0) = z(¢) = p then V'™ = V™(t) is obtained by solving the differential
equation . '

dz™
ds

subject to the boundary condition that V™(0) = V™. Being a linear differential equation
of first order the solution depends linearly on the boundary condition, hence

v,,i/m‘(s) =0 (7.32)

yim = §myn | (7.33)

‘with 5™ a tensor that depends on M and on C but not on V7. Since parallel transport
preserves length the components § %y of the tensor in an orthonormal frame form an or-
thogonal matrix. In this way a rotation matrix S (C) can be associated with each curve
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C that starts and ends at p. The set of all such S(C) for all possible curves C form the
holonomy group H of M. It is necessarily a subgroup of O(d) and it is easy to show that
‘H is independent of the point p that is chosen.

The holonomy group gives information about how curved the space is. A flat manifold has
as its holonomy group just the trivial group consisting of the identity element only. S? has
O(2) as its holonomy group as can be seen by choosing the basepoint p to be the north
pole and considering curves C(8) that are spherical triangles that subtend an angle 6§ with
the equator. After parallel transport around C(6) the vector is rotated through an angle
8 as in the figure.

More generally, the holomy group of S¢ is SO(d) for d > 2.

The holonomy group of an n-dimensional Kahler manifold is contained in U(n) which is
of course a subgroup of O(2n). To see this note that since the connection coefficients are
pure, a vector v that has only holomorphic components is carried into another such vector
after parallel transport around a closed curve. Thus, if we choose a basis of vectors at p
such that

ea =€, 0 (7.34)

X Gz

9(earep) = dap (7.35)
then under parallel transport around a closed curve C the e« will change according to
ea — S, Peg (7.36)
and eqn.(7.35) tells us that (S_#) is a unitary matrix.

Consider now the ¢hange induced in a vector V* by parallel transport around an infinites-

imal rectangle of area §a™" with edges that are parallel to the vectors 'asz and 6;9" CItis

a standard result that

V= VE L 6a™ R,k Ve (7.37) "

The matrices

6F, +8a™ Rimn®y (7.38)
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are the elements of H that are infinitesimally close to the identity. We know that these
matrices transform a vector which has only holomorphic components into another one
such. Thus Rmn¥s is pure in the indices (k,¢). Lowering k, the conclusion is that Ronke
mixed in (k,£). When this is combined with the symmetries of the curvature tensor we
recover the fact that the only nonzero components of the curvature tensor are those of the

form R#ﬁp&.

The matrix §a™"R,,,%¢ is in the Lie algebra of U (n). In a neighborhood of the identity
U(n)= SU(n) x U(1) (7.39)

the U(1) being generated by the trace

6a™"Ronns = —48a*’R 5 (7.40)

the equality following from (7.29). Thus the U(1) part of the holonomy is generated by
the Ricci tensor. So if the manifold is both Kahler and Ricci-flat then the holonomy group
is contained in SU(n). Certainly this statement is true for the local holonomy group,
which is the subgroup of the holonomy group associated with paths C that may be con-
tinuously shrunk to a point, however if the manifold is multiply connected then there are
paths that cannot be continuously shrunk to a point. The statement that the holonomy
group of a Ricci-flat Kahler manifold is contained in SU(n) even when the manifold is
multiply connected is nevertheless true though the proof is more involved. We will return

to complete the proof later.

Exercise: Show, by explicit construction of the operators in terms of covariant derivatives
and Riemann tensors, that on a Kahler manifold

601 + 010 = 55t + 616 = S(aa + dl o).

This result shows that deRham cohomology and d-cohomology are equivalent. O
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VIII CALABI-YAU MANIFOLDS

Definition: A Calabi-Yau manifold is a compact Kahler manifold of vanishing first Chern
class.

The following is a very useful preliminary result.

Theorem: A Calabi-Yau manifold with nonzero Euler number has b, = 0.

We have .
bio = bo; = 551 (8.1)

and b; is a topological invariant so it suffices to establish the result for the Ricci-fat metric.
Let updz™ be a harmonic one-form. The explicit form of the Hodge-deRham equation for

one-forms is -
~V*Vium + R ™un = 0. (8.2)

Since the Ricci-form vanishes we have
VEViupm =0. (8.3)

We premuitiply this equation by u., integrate over M and integrate by parts to obtain
/ (Vi) (V™u™) g2 d8z = 0. (8.4)
M

Thus u,, is covariantly constant
Vmun =0. - (8.5)

A result that we do not prove here is that a vector field on a manifold of Euler number X
has at least |x| zeros. Thus u™ must have a zero and being covariantly constant it must
vanish identically.

A remarkable property of Calabi- Yau manifolds is the fact that they admit gauge covari-
antly constant spinors. We state this in the form of a theorem.

Theorem: A Calabi-Yau manifold admits a globally defined pair of spinors ¢, { of opposite
chirality and a globally defined one-form A = A,,dz™ such that

(Vo — %Am)c =0
c (8.6)
(Vm+ 5 Am) =0
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with A a potential for the Ricci-form
R =dA. (8.7)

Here ( is the complex conjugate (not a Dirac conjugate) of (.

The theorem is really an observation concerning the fact that the holonomy group of a
Calabi-Yau manifold is the product SU(n) ® U(1) and the covariant derivative is a gauge
potential with respect to this group, the gauge potential being the spin connection. This
is seen explicitly by recalling that the covariant derivative acts on an arbitrary spinor

according to the rule
1 a b
Vi = 0mn — Zwm 6Ya T . (88)

where w,,*; are the components of the connection one-form and v = ylay%l ig 5 product
of Dirac matrices. Note also that a spinor in six dimensions has eight components which
transform in the 4 @ 4 of O(6) ~ SU(4). The 4 and the 4 have opposite chiralities. The
4 of SU(4) decomposes with respect to SU(3) ® U(1) as

4=3"9173 (8.9)
Thus there is an SU(3) singlet which is charged with respect to the U(1). In (8.6) ( is

the SU(3) singlet and A,, cancels the U(1) part of the gauge potential contained in the
* - covariant derxvatwe so that the combined quantity

Dm = Vm - %Am (810)

is the SU(3) gauge covariant derivative. Equation (8.7) expresses the fact that the Ricci-
form 1s the field strength of the U(1) part of the holonomy. All that is required is to check
the normalization of A,,. We will do this presently. First however we need to develop
some of the propertiés of { and of the Dirac algebra.

On a six-dimensional manifold we may take the Dirac matrices 7,, ,m = 1,....6 to be
hermitean and imaginary and the matrix v that determines the chirality

i n 8
7= ’6'T€mnpqr37m7 YPyiyTy (8-11)
is then also hermitean and imaginary. We choose ¢ such that

¢ = +<¢. (8.12)

Now C ]LC is a constant on M in virtue of (8.6) so we will assume ¢ to be normalized such

that
cfe=1 (8.13)
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Define

' ' I = "iCt?’mnC (8.14)
we see from (8.6) that J,," is covariantly constant. It is straightforward also to show by
means of Fierz identities that

Jannp = _6mp- (815)
Thus we identify J,., as the Kahler form of M.

Now the Dirac algebra on a Kahler manifold takes the form

{r*7"}=0 , {#"4"}=0
{v¥,7"} =2¢%*.
The Dirac algebra is the algebra of fermionic raising and lowering opefators. We may

think of the v#, say, as raising operators. We shall now show that ¢ is the state of highest
weight and is annihilated by the v#. Consider (8.14) which we write as

(8.16)

iguﬁ = - Ct}'pic

‘ . (8.17)
= —iM (175 = g )C.
It follows that ;
: 0=C"vu7s
- # TC (8.18)
= (7a¢)' (75€)
by considering the case fi = 7 we see this is impossible unless
75¢ =10 _ (8.19)
or equivalently
¢ =0. (8.20)

We may act on ( with lowering operators. Since the v, anticommute among themselves
we have

¢ 178
¢ 371
# L (8.21)
74w< 3
Yuvol 1°

a total of eight states. In the second column we give the SU(3) @ U (1) representations in
which these spinors transform. Note that these spinors are linearly independent since they
transform differently under the holonomy group. As there are eight states an arbitrary
spinor 7 can be decomposed in the form

n = w(O,O)C + w(ﬂ,l)l_ﬁﬁc + w(0,2)ﬁﬁ7ﬁf'§ + w(O,G)WﬂﬁWC‘ (8.22)
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The coefficients w(o’”mmﬁq are naturally (0,¢) forms. Thus a spinor may be identified
with (0, ¢)- forms ¢ = 0,..., 3. This can be used to show that spinors exist on Calabi-Yau
manifolds s.e. that each Calabi-Yau manifold is a spin manifold.

Let us return now to equation (8.6) in order to deduce (8.7). To this end we operate on
(8.6) with V and sl\ew on k and m and use the relation

[vk, vm]c = "'Zkapq'}'qu (823)

we obtain the relation

RimpgvP¥( + QiV[kAm]C =0. (824)

We now contract this relation with v™ and use the identity

1
ymyPe =5({7”,7m} - ["%,7™)

; (8.25)
=§(27’””q + 4g™lPyd),

The quantity Rimpqy™P? vanishes in virtue of the undifferentiated Bianchi identity. We

are left with
(Rkm — V(g Ay )7™C = 0. (8.26)

We now exhaust the content of this equation by taking k equal to & and K in turn and
using the fact that the three spinors vA( are linearly independent. We find

Rep=-— QiV[KAﬁ]

ViAn 0 (8.27)
Contracting with dz* A dz* gives
R = 0(Apdz*) + (A dz*) (8.28)
and ~ i
O(Apdz#*) = 9(A,dz*) =0 (8.29)

this relation together with the one above are eqivalent to (8.7).

We are now in a position to establish a very useful theorem.

Theorem:

(2) A compact Kéhler manifold has vanishing first Chern class if and only if the manifold
admits a nowhere vanishing holomorphic three-form. That is a (3, 0)-form

Q= %Quw(m)dm“ Adz? A dz* (8.30)
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whose components are moreover holomorphic functions of position.
(72) © is harmonic.

(21¢) The holomorphic three-form is covariantly constant in the Ricci-flat metric.

First let us suppose that a holomorphic three-form exists on M. We set

192 = S Qi (8.31)

4

Since the holomorphic indices take three values Q,, must be proportional to the permu-
tation symbol €.,,. So within each coordinate patch we may write

pru(z) = f(z)fnuv (832)

with f(z) a nowhere vanishing holomorphic function. Complex conjugating and raising

the indices we find _ _ I
Qruv — feﬁéi_gx.pgpagur )

— %fe"“" (833)
where g again denotes det(g.;,;,). Hence
s _ AfPP
9* = 7575 8.34
Bk (834
and by (6.13) we have
R =i0dlog g% = —iddlog([|Q|?). (8.35)

Since log(]|Q2]|?) is a coordinate scalar which by hypothesis is globally defined we learn that
R is exact and hence that c;(M) vanishes.

We give two proofs of the converse. The first utilizes the properties of the gauge covariantly
constant spinors. This has the advantage of being intuitively clear but is not very direct.
The second proof is based on Yau’s Theorem and is much more direct but requires a result
in Cech cohomology.

L. If ¢; vanishes then we know from our previous discussion that there exists a spinor (
satisfying (8.6) and (8.7). We also know from (8.29) that A adz? is a O-closed (0,1)-form.
We have shown that if the Euler number of a Calabi-Yau manifold is nonzero then the
Hodge number b1 vanishes. Thus if the Euler number does not vanish there exists a scalar
& such that

A = da. (8.36)

We set N
anr = e—zaCT'}'man (837)



and

1 m n r
Q= é'Tanrd:c Adz™ Adz". (8.38)

It is easy to show, in virtue of (8.20) that the only nonvanishing components of ) are
the Q,.,,, moreover they are nowhere zero since it may be shown by means of a Fierz

rearrangement that »
[Q)? = 27¢HE==), (8.39)

In virtue of (8.36) and (8.37) we have
00 =0, (8.40)
also since {2 is a (3,0)-form 02 must vanish since otherwise it would be a (4,0)-form. Thus
dQ = 0. (8.41)

It is also easy to see that  is co-closed.

dfa = —%Vmﬂmmdz“ AdzT

|
= —é—g”K(agQ,‘up)dm" A dz? (8.42)

=0

II. Yau'’s theorem assures us that every Calabi-Yau manifold admits a metric. 9up satisfying
8,8;log g =0 (8.43)

in other words there exist functions f; defined on each chart U ;j such that

g =1f (8.44)

moreover each f; must be nonvanishing on U; since otherwise the metric would be singular.
The idea of the proof is to show that it is possible to choose a set of phases 8, in such a

way that the quantity .
e fj(a:)dz:l,- A da:? A da:;f ) (8.45)

is independent of j and is in fact equal to the holomorphic three-form.

We need to study the transformation properties of the fj- From the transformation rules

1 a N 2 1
9i Az:) =g;. (8.46)

9(z;)
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Taking this together with (8.44) we make a separation of variables argument

fié%l ; o
Oz;) /; =¢'%i (8.47)

) a(z;)
f fi-a-m

The first quantity is a function of the z* while the second is a function of the z#. These
can be equal only if they are both equal to a constant which we have written as ei®i_ It
is immediate that the §;; are real. By considering also the inverse transfomation we have

bij = =0 (8.48)

It is important that the 6;; are a set of constants associated with the nonempty overlaps
U; N U;. We may consider also nonempty triple overlaps U; N U; N Us. By considering
succesive transformations we find that

0ij + 0k + 0 =0. (8.49)

Now in the language of Cech cohomology 635 is a one-cochain and is the analogue of a one-
form (the counting is that a zero-cochain is a set of constants 8; defined on the U; and
is the counterpart of a zero-form i.e.. a function). Relation (8.49) is the cocycle condition
analogous to the statement that the corresponding form is closed. Cech cohomology is
-equivalent to deRham cohomology so if b; = 0 the cocycle condition can be satisfied only
if 8;; is in fact a coboundary, t.e. the analogue of an exact form,

9,']' = 9" - 9j (850)

for some choice of constants §; associated with each U;. From (8.47) we have the trans-
formation law
(z;)

~t8; . — —18; g
€ f,—-——a(zj) e f; (8.51)
So .
Q=e""% fi(z)dz; A dz? A dz? (8.52)

is independent of the coordinates used in its definition.

By repeating the arguments of the previous proof one may show that € is harmonic. It
remains only to show that £ is covariantly constant in the Ricci-flat metric. Note that

ViaQuuo(z) =0 (8.53)
since f; is holomorphic. Consider therefore
Ve = 0uQuip = 3T e " U o (8.54)
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Now T (47820, being skew in (u, v, p), must be proportional to ,,,. In fact

Qéng Y
FN[# va]rf = WF% QUCUQ#VP

Lo (8.55)

1

QI = Qo =

5,c(logg%)ﬂw,p.

Thus

ViSyuvp = (Ocf — fOclo ) e,
:é f—f (| f1 )) pvp (8.56)

In passing we note a useful identity. Although it might appear improbable (J### /1112 is
a nonsingular holomorphic tensor field

_ Quue
B(W) =0. (8.57)

This is a simple consequence of (8.33) and (8.34) from which we have

Quve

1
e f

Hvp (8.58)

with f nonvanishing.

Hodge Numbers of a Calabi-Yau Manifold

We have just shown that a Calabi-Yau manifold always admits a holomorphic three-form
and that this form is harmon@_c. Thus b3 > 1. It follows that by, is precisely one. For
another harmonic (3,0)-form (, also being proportional to dz! A dz? A dz3, must satisfy
the relation

Q(z) = h(z)Q(z) (8.59)
with h a nonsingular function.
Now i
dQ=8hAQ ‘ (8.60)
hence B
Oh = 0. 4 (8.61)

We learn that A is holomorphic on M. But it follows from the maximum modulus principle
as in §1 that a globally defined holomorphic function is a constant. Thus ) is simply a
constant multiple of Q.
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Theorem: A Calabi-Yau manifold has by = b10.

Let w be a harmonic (2,0)-form and set

1~ -_
Vg = Q‘Qr‘cﬁﬁw#y (8.62)
then
- Qt‘cp&
£ ﬂQ—”Evg. (863)
From (8.62) we have
o 1.
Vi = EQ"""V,‘ww =0 (8.64)

Vﬁwﬁ& = —-—-—V,;vg = 0 (865)

We see that the (0,1)-form v is harmonic with respect to d if and only if w is harmonic
with respect to 8. However it was shown in §7 that a form is harmonic with respect to d
if and only if it is harmonic with respect to 0 or equivalently if and only if it is harmonic
with respect to d. Thus w is harmonic if and only if v is. Hence b0 = byo. More generally
for an n-dimensional manifold we have bpo = bn_p,o. :

It is customary to display the Hodge numbers of a complex manifold in-an array called
the Hodge diamond

bszo  bar b1z bos (8.66)

The diamond has a number of symmetries. Complex conjugation gives byq = by, so the
diamond is symmetric under reflection in the vertical axis. Poincaré duality implies b,, =
bn—g,n~p which makes the diamond symmetric also under reflection in a horizontal axis.
- Finally, as mentioned above, the existence of a holomorphic n-form implies by = bn_p 0.
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For a Calabi-Yau manifold the Hodge diamond takes the form (a.t.least for x #0)
1 byr by 1 (8.67)

Thus a three-dimensional Calabi-Yau manifold has b;jand by, as its only undetermined
Hodge numbers. These can take many values subject, of course, to the restriction that
bi1 > 1 since the Kahler form is a (1,1)-form. :

The Euler number of a Calabi-Yau manifold is related to b;; and b, in a simple way

X=2b0*2b1+2b2—b3
= 2(b11 — ba1)

Spinors On Ricci-Flat Manifolds

A number of further properties of spinors may be established for the case that the Calabi-
Yau manifold is endowed with its Ricci-flat metric. :

The first of these is that the gauge covariantly constant spinor ¢ may now be taken to be
covariantly constant. Recall that { satifies the equation

Vil - %Amc =0 . (8.69)

where now

dA =0. (8.70)

If we assume that b; vanishes then 4 must be exact
A=da (8.71)
for some globally defined scalar a. Thus (8.6) becomes
Va(Ce™%) = 0. - (8.72)
Henceforth we shall assume that ¢ has been redefined so as to absorb the phase factor.
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The expression for the holomorphic three-form simplifies to

Qmnr = CT"Yman- (873)

We have seen that an arbitrary spinor can be expressed in terms of (0,q)-forms 0 < ¢ < 3.

~ (1) -
1= 3 G an
<q=0 *

This expression enables us to extend the action of the operators 8 and at to spinors.

We define .
On=——=7"Vyn (8.75)

V2

and

= 1
617] = —E’y“v‘,q. ' (8.76)

Note first that 8 and &' square to zero. For example

80y = —4™[V3, Viln =0 (8.77)

Ny

since the Riemann tensor is zero when its first two components take antiholomorphic values.

Exercise: Show that if 7 corresponds to a given set of forms {w(%'9} which we may denote
by

then _ ~ .
I ~{8u®D}  and  8lp~ {Fl0O9). o

Observe that the Dirac operator is given by -

YV = —V/2(8 + 81 ). (8.78)
If 7 is a zero mode of the Dirac operator then, in an obvious notation,
((0+8Nn,(5+8tm) =0 619
(n, (881 + 518))n = 0. '

Thus 7 is a zero mode of the Dirac operator if and only if the forms {w®D} corresponding
to n are harmonic. By referring to the Hodge diamond we see that the only nonzero
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harmonic (0, ¢)-forms are those for which ¢ = 0 and ¢ = 3. Thus the only zero modes are
¢ and (f . The situation is more interesting, however, if we enquire about zero modes of
the Dirac operator acting on spinors 7, that have a holomorphic index. The formalism
that has been developed applies equally well to this case except that N, 1s now related to

‘one-forms

e
_ Y 2
T L gy e S (8.80)
The solutions of the equations
7" Vanu =0 - (881)

correspond therefore to harmonic (1, ¢)-forms. Reference to (8.67) shows there to be byt so-
lutions corresponding to (1,1)-forms and b,; solutions corresponding to (2,1)-forms. These
have opposite chirality and correspond in the compactification of strings to families and
antifamilies of particles[8,9]. :

Global Holonomy of Ricci-Flat Manifolds

Finally this is an appropriate point to complete the argument that the holonomy group
of a Ricci-flat Kahler manifold is SU(3) even if the manifold is multiply connected. The
argument depends a key fact which we shall merely quote. It is a corollary to the Gromoll-
Meyer Theorem [10] to the effect that any multiply connected, compact, Ricci-flat, manifold
M is the quotient of a simply connected manifold M, by a finite isometry group G that
acts without fixed points

M = My/G. | (8.82)

Since the covering manifold is simply connected and Ricci-flat, as well as Kahler if M is,
we know that its holonomy group is contained in SU(3) by our previous reasoning.

Consider now the holomorphic three-form § at a point p’ of M,. This projects down to
a (3,0)-form at the corresponding point p of M. Let C be a non-contractible loop in M
that begins and ends at p and let ®.” be the parallel propagation matrix corresponding
to C so that after parallely propagating Q around C we have

sz\p — QNV@AP(P;AUQV;)U = (det (I-’)QA:A;;- (883)

The question is whether det ® is the identity. In M, the loop C corresponds to an open
curve connecting two points p’ and p” which both project down to p. Thus the question
is equivalently whether the results of projecting Q@ down from p' and p" agree. But they
must agree since otherwise M and M, could not both be Calabi-Yau spaces.
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embedding

IX EXAMPLES OF CALABI-YAU MANIFOLDS

At the time of writing there is no systematic way to construct or classify all Calabi-Yau
spaces. It is possible however to construct examples of Calabi- Yau manifolds by means of
special techniques that succeed in favourable circumstances. In this section we review two
of these techniques, the construction of Calabi-Yau manifolds as hypersurfaces in projective
spaces and as ‘blow ups’ of orbifolds.

The reason that one seeks to construct Calabi-Yau manifolds as submanifolds of P, is that
one may not easily construct them in the way that one might naively wish, as submanifolds
of Cr. The reason for this is that one wishes to construct Kihler manifolds. Since C,, is, of
course, Kahler submanifolds described by holomorphic equations are guaranteed also to be
Kahler. The catch is that we know by the maximum modulus principle that none of these
analytic submanifolds is compact. It is for this reason that one turns to projective spaces.
P, is both compact and Kéhler so its analytic submanifolds also have these properties.
There is also a theorem due to Chow [11], not proved here, to the effect that analytic
submanifolds of projective spaces may be described as the zero locus of a finite number of
polynomials of the homogeneous coordinates.

We shall discuss only submanifolds M that are complete intersections of N polynomials
p% a =1,..,N in a product of projective spaces of total dimension N+3. We shall refer
to-these submanifolds as CI manifolds. By a complete intersection is meant that the
N-form

¥ =dp' Adp® A...Adp"N 4 (9.1)

does not vanish on M. This condition guards against the polynomials describing a surface
with cusps or nodes. ¥ describes the N directions normal to M. If M is smooth then ¥
cannot vanish. If ¥ were to vanish at a point p of M then this would imply that M did not
have well defined normal directions at p and so could not be smooth. The assumption that
¥ does not vanish is quite restrictive. Of course one expects that giving N equations in
an N+3 dimensional space will describe a 3-dimensional manifold locally. The restrictive
assumption is that they should in fact do so globally. Perhaps the simplest example of a
manifold that cannot be described as a complete intersection of polynomials is the Segré

P1 X P2 — P5. (92)

Let 2%, i=1,2 and y™, m=1,2,3 be homogeneous coordinates for Py and P, respectively
and set |
' = gly™ (9.3)

which we regard as homogeneous coordinates in Ps. The embedded submanifold is de-
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scribed by the equations o o
£ =™ =, (9.4)

Nontrivial equations are obtained if ¢ # j and m # n. There are three such equations
corresponding to taking (i,j)=(1,2) and (m,n) to be one of the three choices (1,2),(2,3),(3,1)

pl = t11t22 _ t12t21 =0

p3 - t13t21 _ t11t23 = 0'

These three equations together describe a smooth three-dimensional manifold embedded
in a five-dimensional manifold. Moreover it is not possible to describe the submanifold as
a complete intersection with just two of the polynomials p! and p?, say, since for example
for the embedded P, described by the equations

y¥=y*=0 (9.6)

we have
t12 — t13 — t22 — t23 — 0 (9.7)

so the polynomials p' and p? both vanish there and so does dp? and hence also dp! A dp?.
There is always a choice of two of the polynomials p!, p?, p3 which describes the embedded
submanifold in a neighborhood of any point but it is not possible to specify it globally
with just two of the three.

Given that the submanifold M is compact and Kihler the question becomes whether the
polynomials may be chosen such that AM has vanishing first Chern class. This can be
answered by computing the Chern polynomial of M. However we prefer to follow another
construction [12] which is perhaps more intuitive. This makes use of the theorem that the
first Chern class of a three-dimensional compact Kahler manifold vanishes if and only if
M admits a globally defined and nowhere vanishing holomorphic three-form. The utility
of the theorem is that one can attempt a direct construction of .

Consider a complete intersection of N polynomials p®, & = 1,....N in a single projective
space Pnt3. The natural quantities that we have at our disposal are the homogeneous
coordinates z4, A=1,... N+4, their differentials dz4 and the permutation symbol with N+4

indices _
€A1 Az.... AN pq- (9.8)

The metric G 45 of the embedding space cannot be used since it has an antiholomorphic
index. There is only one differential form that can be constructed from these quantities it

is an (N+3)-form

K= EAlAz..‘_AN+4ZA1dZA2 A dZAS AL /\*dZAN‘*". (99)

64



Now z# and Az4 are the same point of Py+3 50 g is not even a well definded quantity.

Under the scaling

24— Az4 (9.10)

it 1s not invariant, in fact it transforms as

p— ANF, (9.11)

We can however construct a well defined 3-form y by proceeding in the following way. We
divide by the product of the N polynomials p* thereby obtaining a form

(9.12)

that has poles on the curves p* = 0 and then integrate around an N-dimensional contour

FN =71 X772 X eo. XYN (9.13)

which is the Cartesian product of N small circles each of radius § that wind around the N
curves p* = 0 as in the figure.

We obtain in this way a 3-form

. M _ N
%1_13}) . v (2m2)" Q2 (9.14)

which is holomorphic by construction and is in fact nowhere zero though to show this
directly requires more work. The important point is that from 4 we can construct
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provided only the meromorphic form v is well defined. Under a scaling each p% will

transform as '
pa N /\deg(or)pa (915)

where deg(a) is the homogenéity degree of p®. Thus (9.12) is well defined if

~ 4
> " deg(a) =N +4. (9.16)

a=1

This then is the condition that M has vanishing first Chern class. There are not as many
possibilities here as might at first be thought. A linear equation in a projective space P,
1s, by choice of coordinates, equivalent to the equation

2"t =0 (9.17)

the remaining n homogeneous coordinates define P,_;. So to avoid a redundant description
we require

deg(a) 2 2; (9.18)
it follows that
N
N+4=) deg(a)>2N (9.19)
a=1
1.e. that
4> N. (9.20)
This leads to five manifolds
Py[5] _200

P5[3,3]-144,  Ps[2,4]-176
Ps[2,2,3] _144 (9.21)
P7[27 21 27 2]—128
where the integers within brackets are the degrees of the corresponding polynomials and

the number appended to the brackets is the Euler number of the manifold which may be
calculated from the Chern polynomial.

Tian and Yau [13] have presented an interesting manifold of Euler number -18. The
manifold is realized in P; x P; by three polynomial equations
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3 -
Sattao ]
A=0 'J

3 -

3

g(xf*f =0 {0- (9.22)
i(y")?‘ =0 { 0
A=0 ! 3"

where z4 and y® denote the homogeneous coordinates of the two P3’s. As a real manifold
the manifold is fully specified by the degree vectors that give the degrees of each of the
polynomials in the variables of each projective space. These are written in the right hand
column of equation (9.22). To establish notation we denote this manifold by a matrix
whose columns are the degree vectors:

Ps[1 3 0 *
n[i 3] | (9.23)

The Tian-Yau manifold is of interest because it admits a freely acting Z; symmetry which
may be realized by cyclically permuting the first three homogeneous coordinates of each
--space and multiplying the fourth by cube roots of unity '

2 1

(@h,2%,2%,2%) x (v1, 4%, 4%, y*) — (2%, 2%, 21 wat) x (2, 4%, yh, wiyh), (9.24)
The group action on the manifold is fixed point free so the quotient manifold, which has
points identified under the action of the group, is also a smooth Calabi-Yau manifold
which has Euler number -6, corresponding to three generations of particles. The Tian-Yau
manifold suggests a generalization to a large class of spaces. We will consider transverse
intersections of N polynomials p* in products of projective spaces such that the total
dimension of the ambient manifold is N4+-3. These spaces are specified by a degree matrix
that gives the degree of each polynomial in the variables of each projective space

Py ray aja ... ainN]
Py G2 az2 ... azn
: P1 an af ... arN
9.25
Po | by by ... by (9.25)
Poy 1 bar bae ... by
Pne Lbr1 bpy ... bpy ]



It is convenient to separate the P, factors explicitly so we suppose there to be f P, fac-
tors and then a further F factors of spaces of dimension at least two. In order for the

submanifold, M, to be three dimensional we have

F
dni+f-N=3 (9.26)
k=1 :

We can construct the holomorphic three form for M by generalizing our previous con-
struction. We now have coordinates z;-‘*, A =1,...,n; + 1 for each factor space and for
each factor space we may construct an n;-form

Hj = €A Ay An, _HzAldzA’ A..... A dzAni+t, (9.27)

The product of all these,
p= H 1 (9.28)

is an (N+3)-form in virtue of (9.26). We may seek to construct £ by dividing x4 by
the product of the p* and integrating over a contour I'yy as in the previous case. This
construction is sensible provided

7
9.29
pN ( )

pl..

is well defined on the ambient space. The coordinates of each projective space may be

scaled separately

zf — Az, (9.30)

So (9.29) is invariant if

N
Y degj(a) =n; +1. (9.31)

a=1

This is the condition that (9.25) represents a manifold with vanishing first Chern class and
we shall refer to a matrix that satisfies this condition together with (9.26) as a Calabi-Yau
(CY) matrix. In order to avoid redundancy we exclude the possibility of polynomials that
are linear in the coordinates of one space and independent of other coordinates since this
would serve only to reduce the dimension of the relevant factor space. This amounts to

demanding that
f+F

Z degi(a) 2 2. : (9.32)

68



As in the previous case of only one polynomial this inequality greatly restricts the possi-
bilities. If we sum eqn(9.31) over j and employ (9.32) we find

f+F N f+F
Y o(mj+1)=)" degj(a) > 2N (9.33)
1=1 a=1 j=1

which, in virtue of (9.26), becomes

F+f+3>N. (9.34)

Consider the quantity Zf___l(ng — 1) which, for want of a better name, we shall refer to as
the overdimension. By (9.26) we have

F
N (nj-1)=N+3-f—F (9.35)

=1

and hence by (9.34)
F

> (nj-1)<6. (9.36)

ij=1

Each of the spaces of dimension greater than one contributes at least one to the sum so
we see that there are at most six spaces that are not Ps

F <6. ‘ (9.37)

The number of P{s on the other hand is, so far, unrestricted. To place a bound on f
Green and Hiibsch noted recently [14] that certain other constraints result in a redundant
description. As explained in Section III a bilinear constraint acting in P; x P is equivalent
to a P;. In a block notation we have

P1 1 a
P] 1 b =
X {0 M

(9.38)

P1 a+b
X | M

where X denotes any product of projective spaces, a and b are row vectors, and M is a
matrix. Also a quadratic constraint acting in a P; should involve the variables of another
factor also since otherwise the matrix is a block product

e {g A'H (9.39)
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corresponding to a product manifold. We exclude product manifolds as trivial cases since
one of the factors of a product M; x M, must be one dimensional and hence a torus. The
remaining factor is either itself a torus or the K3 surface. By forbidding configurations
corresponding to (9.39) and the left hand side of (9.38) Green and Hiibsch show that

f<9. (9.40)

This shows that the number of manifolds that can be constructed this way is finite. The
possible ambient spaces satisfying the constraints (9.37) and (9.40) are listed in Table I. By
means of a computer it is possible to compile an exhaustive list of almost 8,000 matrices
that satisfy the constraints [15]. The Euler numbers that arise in this way are displayed
in Table II. We display also in diagramatic form a few of the manifolds of the CICY list.
The diagrams are due to Green and Hiibsch who denote a projective space by a circle and
an equation by a dot. The degree of the equation in the variables of each projective space
is recorded in the number of lines that connect the dot to the circle. Thus the dimension
of each projective space is one less than the number of lines emanating from the respective
circle.. In this notation the Tian-Yau manifold is

«—0——0——>>»

It is difficult to know how many matrices in the list correspond to. distinct manifolds.
Certainly there are many identities similar to (9.38). Green and Hiibsch [16] have given an
algorithm based on the method of spectral sequences which permits the individual Hodge
numbers b;; and b;2 to be calculated. There are 250 sets of values of the pair {by1,b91)
[17] which provides a lower bound to the number of distinct manifolds in the list.

5B
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Table I: Ambient Spaces

Space g fmaz Exnb Number
(P)! P, - 4 0 5
(P1)/ P} - 5 0 6

(Py)! P;Ps - 5 0 6
(P1)f(P;)9Ps 0—1 5 1—g 12
(P)I(P)* | - 6 0 7
(P)f(Py)9P; P, 0—1 6 1—g 14
(P)f(P,)9Ps 0—2 6 2-¢ 21
(P (P)9(P3)? 0—2 7 2-g¢ 24
(P (Py)9P, 0—-3 7 3—g 32
(P (P)9P; | 0—4 8 4—g 44
(P (Py)e 0-6 9 6—g 64

In this table we show all possible ambient spaces. These 295 ambient manifolds fall tnto
classes according to the number of P;- and Ps-factors. The third column gives the ezcess

number
f+F

exnb = Z(n, +1) - 2N
i=1

which vanishes when all the columns sum to two, the minimum value which avoids trivial.
consiraints. A large exnb usually means that there are many ways to construct inequivalent
degree matrices for a given ambient space. The minimum number of Py factors 13 zero

ezcept for
(Pl)f where fmin =4

(P)P; where finin=2.
(P1) Py where fiin =1
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Table II: Euler numbers

0

. —42 | -82 * ~162
—4 | —44 | -84 | —124 x

* —46 | —86 | —126 «
-8 | —48 | —88 | —128 | —168

. ~50 | —90 i «
-12 | -52 | -92 | —132 -
~14 | —54 | -94 " *
—16 | —56 | —96 * —176
~18 | —58 | -98 | —138 .
—20 | —60 | —100 | —140 x
—22 | —62 | -102 * «
ot | —p4 ~104 | —144 «
—26 | —66 | —106 * *
-28 | —68 | —108 | —148 «
-30 | -70 | —110 | —150 *
-32 | —712 | -112 N x
-34 | —74 | -114 . *
—36 —-76 -116 * *
—-38 —78 * * *
—40 | —80 | -120 * ~200

72



The Hodge numbers do not exhaust the topological information available. There is con-
siderable information available in the numbers

#ijk“—:/ wiAw; A wg
M

1/;:/ Cca A w;
M

where the w; are the harmonic (1, 1)-forms and ¢, represents the second Chern class (see
§10). These numbers are topological i.e. they do not involve the complex structure in
virtue of two facts. (i) The Hodge number b,y vanishes so HOD(M) H?*(M) and
(ii) the Pontrjagin class p! is related to the Chern classes by

(9.41)

p'=ci - 2c,. (9.42)

Since c; vanishes, ¢, and p! are proportional and p' is defined for a real manifold inde-
pendent of any complex structure.

A theorem of Wall [18] shows that the data (9.41), together with b3, classify simply con-
nected, real, six-manifolds. The classification of Calabi-Yau manifolds is more complicated
since not every real six-manifold is a Calabi-Yau manifold and a real -manifold may admit
distinct complex structures in such a way that two such may not be continuously deformed
into each other. Nevertheless it seems that the data (9-41) will play an important role in
this classification. ‘ '

A prime motivation for the compilation of the list was to seek additional examples of
Calabi-Yau manifolds corresponding to three generations of particles. All the matrices in
the CICY list have negative Euler number so these would be manifolds corresponding to
Euler number -6. No spaces with Euler number -6 appear in the list. However there do
appear a large number with Euler numbers that are divisible by 6, suggesting that, as with
Yau’s manifold it may be possible to find in the list a manifold M with Euler number -6k
which admits a freely acting discrete isometry group G of order k. For such a manifold the
quotient )

M; = M/g _ . (9.43)

would be a Calabi-Yau manifold with Euler number -6. Surprisingly one may show that,
apart from the Tian-Yau manifold and the two manifolds of Euler number -48 of the
figure, no manifold in the list can admit a freely acting group of the requisite order that
acts linearly on the coordinates of the embedding space {19]. It has been shown that if
these two spaces of Euler number -48 admit a freely acting group of order eight then this
. group must be Z3 x Z3 x Z,, despite considerable ingenuity no such group action has been
found.
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Recently Tian and Yau[20] have given a procedure which, given a Calabi-Yau manifold,
yields other Calabi-Yau manifolds with the same Euler number as the given one. This pro-
cedure yields many new examples of manifolds with Euler number —6. The new manifolds
have the same values for the Hodge numbers as the original manifold and have the same
intersection numbers p;;x. The v; are however different, which shows that the new mani-
folds are not diffeomorphic to the original one. C.Schoen[21] has also presented a method
of constructing a large class of Calabi-Yau manifolds. In particular this construction yields
manifolds with every even Euler number between -8 and 92 and includes a manifold with

Euler number 6.

The Eguchi-Hansen Geometry

The Eguchi-Hansen geometry, EH, is a non-compact Ricci-flat geometry which is useful
for repairing the singularities of orbifolds. It is of additional interest because it can be
constructed explicitly. Our discussion follows that of Strominger and Witten [9].

Let us seek a Ricci-flat Kahler metric of the form

ds* = A(o)dz*dz, + B(o)z,dz*zpdz" (9.44)
where we adopt the convention that
zp=2F | zp = 2# ' (9.45)
as in an exercise in §7 and ]
o =z,z" = zz2". (9.46)
First we impose the Kahler condition. We have
0pgus = A'2,6,5 + Bz,6,5 + B'2,2,25. (9.47)
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For the metric to be Kahler this must be symmetric in p and u. This requires
B =4 (9.48)
The condition that the metric be Ricci-flat is that
8,05 logg? = 0. (9.49)
Now apart from other considerations the determinant of the metric is a function of ¢ only
and for an arbitrary such function we have
0,05 F(0) = F"(0)2,425 + F'(0)6,5. (9.50)
The only solution to the equation
0u0:F(c) =0 (9.51)

is therefore

F = const. (9.52)

Since we may rescale the metric by a constant the Ricci-flatness condition (9.49) is equiv-

alent to the condition
det(gus) = 1. (9.53)

Now

]‘ )z 12
det(oue) =gt eI (A4 M) (B 4 Aop)

=A""Y A+ 04"

Substituting into (9.53) and multiplying by no™=! we have

d n n—1

e ((cA)™) =no™ L, (9.55)
Thus L N

Alo)y=0"Yc+o™)" , B(o)= —o e+ o)t (9.56)
and the metric is
- nyd | CZuZp

We shall take the constant ¢ to be positive since otherwise the manifold has a singularity
where o™ = —c. As ¢ — oo we find gus — b5 so the metric is asymptotically flat. ¢

is a parameter that measures the region in which the curvature is concentrated. We can
effectively set ¢ = 1 by scaling the coordinates z# — ¢ z#. The metric becomes

;=0 14oMF 6, — — 828
Juos =0 (1+0) {5“‘; ’0-(1+0-n)}' (958)
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We need to examine the singularity of the metric at ¢ = 0. We will show that it is merely
a coordinate singularity which may be removed by a proper choice of coordinates.

First note that 0 = 0 is the limit in which all the z# are zero. It is preferable to work with
coordinates such that ¢ = 0 corresponds to the vanishing of just one of the coordinates.

Set

. 1
y:z"’ and y’:zz—n, z':l,...,n—-l. (959)

and to save writing define also _
p=1+y'y. | (9.60)

The limit we shall take is y — 0 with y* constant. Substitution into (9.58) and expansion
of the metric components to leading order in powers of ly| yields

1 1 1 i j n— n— — — T ~ i
ds® ~ p {dy;dy' — ;y;dy yjdy’}+p P {pdydy + (Fdyysdy® + ydgyidy')} . (9.61)

In this form the metric is still singular at y = 0 since the coefficients of all the terms
containing dy and dj vanish there, so at y = 0 the metric has a vanishing row and column
and hence has no inverse. To cure this we make a further change of variables. Set

w = ly"‘ so that y" ldy = dw. (9.62)
n
In terms of (w,y*) coordinates the metric becomes
2 1 i1 i g3 n - n—1(_ i - i
ds® ~ ; dy;dy* — ;y;dy y3dy? ¢ + {p"dwd© + np (Ddwy;dy* + wdwydy')} (9.63)

In these coordinates the metric is regular at w = 0. Note however two important facts.

Firstly w = 0 corresponds to an (n — 1)-dimensional submanifold and the metric of this

submanifold is given by setting dw =.0,dw = 0 in (9.63) and we recognize the resulting

metric as the Fubini-Study metric. Thus o = 0 corresponds in fact to a P,_;. Secondly
we see from the relations . .
— n\n _ —

w==(0", yt=— (9.64)

that the n points a*z#, k = 0,...,n — 1, where @ = €**/" is an n’th root of unity

determine the same values of (w, y'). Since it is in the (w,y*) coordinates that the manifold

is nonsingular and these must be single valued functions of position we must identify the

points '
#xaf? ) k=1, n—1. (9.65)

Because of this Z, identification EH,, is not asymptotically like R,. The statement that
the metric is asymptotically flat is only true locally. The surface corresponding to o = R?,
with R a large constant, is not an $2*~! but rather Sin-1/7..
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Exercise: If n = 3 then ¢ = 0 corresponds to a P;. There is a (1,1)-cohomology class
dual to it. (i) By making an ansatz similar to (9.44) and demanding that the resulting

form w = w,pdz# A dz¥ be trace-free, or otherwise, find w. {ii) Normalize w by requiring
that its integral over the hypersurface o = 0 be unity. (iil) Show that

/w/\w/\wz—-g. O

The Z3 Orbifold

Consider the torus T; obtained by making in C? the identifications
AT LS PP L L) (9.66)
On T3 we impose the additional Z; identification |
2F s ¥R, (9.67)
In each z*-plane there are three fixed points

r {3 3 o .
12 Yoy — L in/8 -
=3 (2 +1 5 ) \/53 , 1=0,1,2, (9.68)

- corresponding to points for which

ey =z + . (9.69)

This construction gives the Z3 orbifold. It is a singular manifold with §-function curvature
concentrated at the fixed points. To see this consider the curve C of radius € of the figure.
It is a closed curve in view of the identifications and has length 27e/3. This shows that
there is curvature concentrated at the fixed point. We see also from the figure that after
parallel transport around C the vector v becomes v’ which is rotated by 27 /3 with respect
to v. The holonomy group of the orbifold is Z;. The orbifold can be turned into a smooth
manifold by the following process. Excise a small ball around each of the 27 fixed points.
The boundary of each ball is §%/Z; which is the same as the hypersurface ¢ = R? in
EH;. The interior of this hypersurface in EH; may be glued in in place of the excised
balls in the orbifold. Since, as mentioned previously the Eguchi-Hansen metric has a size
parameter that measures the region in which the curvature is concentrated, the join can
be made arbitrarily smooth and it can be shown that a Calabi-Yau manifold results. The
way in which the Z manifold was constructed permits us to calculat its Euler number in a
simple manner. It may be shown that the Euler number of EX n 18 n. The Euler number

77



of a torus is zero and the Euler number of a ball is unity. In order to construct the Z
manifold we took a torus, excised 27 balls, took a quotient by Z3 and glued in 27 copies
of FH;. Hence the Euler number is

_(0—27)

T+ x3=12 (9.70)

It is instructive to compute the triple intersection numbers (9.41) for the smoothed ma-
nifold. This was first done by Strominger [22] whose treatment we follow. We begin by
writing down the cohomolgy groups of Z. The Hodge numbers are as in (8.54). The group
H9) | for example, is empty even though it is not empty for the torus Ts. For Ty the
group is spanned by the basis dz* | k = 1,2, 3. However these forms are not invariant
under the replacement z*¥ — az* with a = ¢27/3,

H(D: As a basis we take the 27 forms wy , A = 1,...,27, that correspond to the P,’s
located at the centers of each EH; and the nine forms

vis ~ dz' A d27. (9.70)
By this notation is meant that v;; is asymptotically equal to dz* A dz7 far from the regions
where the curvature is concentrated. Since the intersection numbers that are being calcu-

lated are topological we may suppose that the EHj’s are very small and that the viz is
dual to the four-surface to which dz* A dz7 is dual on 73. The dimension of H(1:1) jg

b1,1 =27+ 9 = 36. (972)

H@Y: This group is empty. Quantities such as dz* A dz7 A dz¥ and dzi A w4 are not
invariant under the Z3 action. Thus by ; = 0.
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As a check we have
X =2(b11—b21) =72 (9.73)

in agreement with our previous assertion.

In this basis it is easy to see that the only intersection numbers that are not zero are
/wA/\wA/\wAzls (9.74)

and
/V,‘i/\ Vim A Vka = [1€;jk€lma- (9.75)

Exercise: Make a model of the 2! plane of the Z-orbifold by folding and taping a sheet of
paper. Draw on this model two surfaces corresponding to the elements of H 1(T3). What
happens to these surfaces when the orbifold is smoothed to give the Z-manifold? ¢

We have reviewed the simplest orbifold. Many other constructions are possible and these
have been the object of considerable study owing to the fact that strings can propagate
consistently on orbifold backgrounds[23]. It is an interesting problem to what extent it is
possible to blow up the singularities of orbifolds to obtain smooth Calabi-Yau manifolds[24].
It has been argued on the basis of string theory[25] that this may always be possible for

orbifolds for which the group G is abelian.
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X. CHERN CLASSES

The Chern classes are cohomology classes that are analytic invariants of the manifold and
are defined by polynomials of the curvature two-form. On a complex manifold it is natural
to choose basis forms (e%,e®), which are related by complex conjugation, such that e is

a (1,0)-form
e” =e%,dz". (10.1)

Consider the connection w?®;. In virtue of (4.21) we have
(0+8)e* +w s Aef +wisnef =0, (10.2)
This relation contains forms of type (2,0), (1,1) and (0,2) and leads to the three equations
de™ + w0y A ef =0

Oe™ 4 wOBay A ef 4 w(l’o)"ﬁ Aef =0 (10.3)
w(o’l)ag A eE =0.

We can now show that it is always possible to choose the mixed components w® 5 to
vanish. To this end note that taking w(01)e 5 to vanish solves the third relation, while
taking w195 to vanish leaves us with the relation

Fe + wODag A B — g (10.4)
But this may always be solved by taking

WD w@De o7 (10.5)

in such a way that ~ ) )
Oe* = w0l oy e A et (10.6)

Clearly the first equation may also be solved in a similar manner. Thus w?; may be chosen
such that w®g and w®; are the only nonzero components. It follows immediately that the
curvature two-form is also pure in its frame indices and

R =dw®g+w*, Aws , conj. (10.7)

Let now O be the matrix of two-forms whose components are R® 8
O = (R%). (10.8)

and define an invariant polynomial to be any polynomial in © which is invariant under
all unitary frame transformations

a

e — % gef. (10.9)
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In other words an invariant polynomial is a sum of terms each of which has its frame
indices fully contracted. Examples are

0% , ©%A0F, , 0% A0, AD7,+0%, A0 A0, (10.10)

Each invariant polynomial defines a cohomology class which is an analytic invariant. To
show this we must show (i) that each invariant polynomial is closed and (ii) that under
a variation of the connection the change in the invariant polynomial is exact. (1) follows
easily in virtue of the Bianchi identity (4.22). Consider for example

(DO°3) A OF, + 0% A(DO* )

dO*sA0P,) =
=0.

(10.11)

Clearly d acting on any invariant polynomial gives a sum of terms each of which contains
a DO%g and so vanishes. With regard to (ii) consider a variation

w“,g —_— walg + 50.10/3. (10.12)

" It is convenient to adopt a matrix notation and not write the frame indices explicitly. The

corresponding variation in © is by (4.20) and (10.7)

00 = d(bw) + 6w Aw +w A bw

— D(5) (10.13)
Thus, for exami)le,
6(tr(© A ©)) = tr (D(8w) A ©) + tr (6 A D(6w))
=d(tr(bw AO) +tr(O A bw)). (10.14)
In a similar way any invariant polynomial varies by an amount that is exact
dF(0) = d(6Q). (10.15)

To establish the result for finite differences let w and w’ be any two connections and let
wy=(1—t)w + tw' (10.16)

so that wy = w and w; = w’. W have shown that
J .
= F(0,) = dQ; (10.17)
for some Q; and integrating this relation we have
1
F(8') - F(©) = d ( / dtQ,) . (10.18)
0
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A specific set of invariant polynomials are the Chern polynomials which are 2k-forms
k=0,...,n, defined by a formal expansion of the total Chern polynomial

w

¢ = det (1+§Z—®> (10.19)

in powers of the curvature
c=co+ci+cy+ ... +Cp. (10.20)

For three dimensional manifolds for example these give rise to the following analytic in-

- variants

¢, = deg(M) = /M (M)
Cy = / a(M)s(M) . (10.21)
M

Cg =X= /MC;;(M)

. Cy is often referred to as the degree of M and C; is the Euler number. If the first Chern
class, ¢y, vanishes then only the Euler number is nontrivial.

Associated with the Chern polynomials is the Chern character ch(E) and the symmetric
polynomials Si(E) defined for a vector bundle E by

ch(E) =tr(e®)

=> %{Sk(E), (10.22)
Sk(E) = tr(z")

where
10 10.23
T = —.
7 (10.23)

The utility of the Chern character being that it behaves well under addition and multipli-
cation of bundles

ch{E® F) = ch(E)+ ch(F) (10.24)
ch(E @ F) = ch(E) A ch(F). (10.25)

Let A, ,m =1,...,n be the eigenvalues of the matrix z. Then
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c = H(1 + Am) =1+ Z,\m + Z AmAn + Z AmAndAr + ... (10.26)

m>n m>n>r

and

Sk =) Ak (10.27)

Thus there are relations between the Chern polynomials and the S; which it is convenient

to write in the form
c1 =54

1
cy = 5(—52 +c})
' 1
c3 = 5(53 — ¢} +3cy1c0) (10.28)

1
cq4 = Z(~—54 +cf —4cfer +deies + 2¢3)

etc.

A convenient alternative way of generating these equations is from the Newton formulse

Sk—e1Sk1+ o+ (=)feak=0 (k> 1) (10.29)

In order to illustrate the utility of the formalism we shall find an explicit expression for
the Euler number of a CICY manifold in terms of its degree matrix . For a manifold M
embedded in an ambient space X by a complete intersection of hypersurfaces the tangent
bundle to X is spanned by the tangent bundle to M and the normal bundle NV to M

TX =TMaN, (10.30)

so that
ch(TM) = ch(TX) — ch(N). (10.31)

Note that the Chern classes on the tangent bundle to M are often referred to as the Chern
classes of M.

Let H be the Kahler form on P,, i.e. the generator of the second cohomology group of
Pn. If his the pullback of H, i.e. the Kihler form of the induced metric on a hypersurface
defined by the vanishing of a polynomial P, then the first Chern class of the normal bundle
is

c1(N) = deg(p)h (10.32)
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since the normal bundle is the deg(p)’th tensor power of the pullback of the hyperplane
bundle. For an ambient space

X =][Pn (10.33)

(where in this context we do not deal separately with possible P; factors) subject to N
polynomial constraints p® the normal bundle is the direct sum

N
N = Q@IN" , (10.34)

of the normal bundles to each constraint considered separately. To save writing we write
£(a) for c1(Ny). It follows from (10.32) that this quantitiy is given by

F
(@)= degi(a)h;. (10.35)
i=1
By repeated application of (10.24) we find that
F
ch(TX) = [(ni+1)eh — 1]
= : (10.36)

N
ch(N) = Z efle)
a=1

The expression for cA(TX) may be justified by noting that although the the tangent bundle
of the P, does not itself split the sum of this bundle with a trivial bundle £ splits into

n+1 hyperplane bundles|
ED®TP, = (n+1)0(1). (10.37)

T A less sophisticated statement of this fact is that a vector in TP, can be thought of as a
linear differential operator
0
A

v=vt—
0z4

that acts on functions of the homogeneous coordinates of P,. Functions on P, are the
functions that have homogeneity degree zero in the z4. Thus

A9 _
0z4
which reduces the number of independent basis vectors to n. It follows that we may
consider a set v of homogeneity degree one to be a vector provided we understand v4 to
be subject to the identification
v v 4 pzA

for any p.
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Hence, in virtue of (10.31) we find

F N
SKTM) =Y (ni+ DhE = 3 €(a). (10.38)

This relation in conjunction with recursive use of relations (10.28) determines all the Chern
classes of a CI manifold.

In particular

F N
a(M) =3 (ni+ Dhi ~ 3~ €(a)

= N (10.39)
= Z{n, +1- Z degi(a)}h;

i=1 a=1 .

and we see that we recover in this way our previous criterion for the vanishing of the first
Chern class.

In order to compute Chern numbers we must integrate products of the Chern classes over
the manifold. This is accomplished by “lifting” the integral to the embedding space where
the integration is trivial. :

First “lift” the integrand to the ambient space, which in this case means remove all the
pullbacks from the H; that restricted the Kahler forms to M. Next insert the Poincaré
dual of M

N
=[] aWa) (10.40)

into the integrand. This form has the “delta-function” property that when we now integrate
the resulting (N+3)-form over the ambient space X, the only contribution is from the sub-

manifold M, and we have that
f & =/ w A (10.41)
M X )

Finally we use that the H!s are normalized so that

Hi=1 (i=1,.,F) (10.42)
o .

Since also H? vanishes for p > n; and w A nam 1s a form of order Zf;l n; it follows that

F
wAqm=CJ[HF (10.43)

=1
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with C a numerical constant. C then is the value of the integral

/ w A =C. (10.44)
X

A simple example of the application of this formalism is afforded by the computation of
the Euler number for a CICY manifold. For this case ¢, (M) vanishes so we see from (2.10)

that ¢; = (1/3)S3. Thus

F 1 F N N
x4 =3 [Z(n.— +DH = > ()| [T &6). (10.45)
i=1 =1 a=1 B=1

This expression is well adapted to rapid machine computation. It is also easy to see from
this expression that the Euler number of a CICY manifold is nonpositive

x < 0. (10.46)

Exercise: Check the Euler numbers of the CICY manifolds of §IX. O
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