L ecture 1
Introduction to Machine Learning

FABIAN RUEHLE (NORTHEAST

RN UNIVERSITY & |AIFI)

ML Iin Maths and Physics 2023
University of Oxtord

17-21 July 2023

Whnat you will learn In the next 90 min

1

Introduction to NNs

Training

with b

(i) _y gD _

oL

00

Chaotic phase

Ordered phase

The transformer architecture

Output
Probabilities

Add & Norm
Feed
Forward

((Add & Norm Je—~

J

slile Wiy Mutt-Head
Feed Attention
Forward Nx
N | (Add & Norm Je~
Add & Norm T
Multi-Head Multi-Head
Attention Attention
Q J \C —)
Positio_nal o) A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Recap

Scaled Dot-Product Attention

MatMul

Multi-Head Attention

Concat

i

P
Scaled Dot-Product h
Attention
1l Ll L
L L L
Linear Linear Linear
V K Q

Chaotic phase

Ordered phase

Output
Probabilities

Add & Norm

(CAdd & Norm Je—~

18 N Mult-Head
Feed Attention
Forward Nx
Nx Add & Norm
Add & Norm Tl
Multi-Head Multi-Head
Attention Attention
A P A 2
\ J \ —
Positional A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs
(shifted right)

Figure 1: The Transformer - model architecture.

Intro to Neural Networks

Neural Networks

» NN Is a family of maps fy : R"i» — R™ parameterized by parameters 6

» The map fy IS a concatenation of

e affine transformations <5 — W;Zz + b,

* element-wise non-linear functions z; — o(z;)

1 (000 0 0

1 1 1 tanh(wy ;21 + w7 922 + b7) 1

W W W) ’ b

<0 1,1 1,2 1,3 - 0 L a0 1 p0 1

— 1 1 1 ‘ tSLm-”—(wz,ﬂl Wq 222 2) | + bl

<1 Wy 1 Wz o Wy3 V(0 .0 4 p0 2
tan_ﬂ(w3,1z1 W3 522 3)

» Compare with

» Taylor Expansion f(z) = Zwi(z —b;)" with w; = 0" f(x)]aeb

» Fourier Expansion f(z) = » w; cos(w)z + b;)

Neural Networks as function approximations

» SO why would one ever do this?

Theorem: NNs are universal function approximators
[Cybenko 89; Hornik 91; Leshno et.al. 93; Pinkus 99]

1.0 2.0

N | ‘ T A |
\ ‘ <./ ') i i
. 0.5
u ' III \ y s ol j |tanh(20x)+1 |
N T
/
m k‘.l!" 2:0 2:Q
1.0 1.0
os | tanh(20x+10)+1| s _ttaarr‘]ﬂ(égi;m)
T e T—

Neural Networks as function approximations

» SO why would one ever do this?

DISCLAIMER:
Thisis NOT
what a NN does

——————————————

Neural Networks as function approximations

» Learning functions for regression

» In practice: build finite width,
finite depth NN

|- - - - - = =-=-=-==-====== | rr====1
I
I
I

() N
N\
PRGNS
K- OB
Og,?m“‘@ G
. z' A .

: ‘«t," b .‘:’Y“‘s’?
'} Y

» Learning functions as decision

(3
' ‘)" Q’O‘ boundaries for classification
AR

O o ® O
| |
R — : ________ S_/ ________ : Sl ‘ ‘ ‘

depth =——p O
»y ‘ ‘

- e e o e G O E EE EE EE EE G G e e - @
=

»Q o
S
A SSRER K

i 5
<Y ,m.«";‘ 7 |

: \) Q}:" :
‘ ‘/‘?/‘\o

6T\
0.9

Training with backpropagation

OO0 20000000

Neural Networks

» In supervised ML, you have a notion of what you want the NN output to be

» This is encoded in a loss function L, which gives the distance between

the NN output fo(Z) and the desired output

i

7)

» Given this distance or loss, you want to update the NN parameters @ s.t.

fo(Z) ~ y(T)

» Typically, the loss function is chosen such that L(fy(¥), y(Z)) > 0 with

equality iff fo(¥) = ¥(Z)

» This means we need to find minima in (a million- to billion-dimensional)
parameter space that generalizes well beyond training data

» Use “cheapest” (linear) optimizer: gradient descent

Visualization - Gradient descent

i
6 f\
A
[

- | \'\

N ¥ Loss landscape as a function

~ \

«~ of the NN parameters, and thus as a functional
(function of a function) of the NN

[
[~

"/

Lol

.

Randomly initialized NN
= Random function
= Random point in loss landscape

Visualization - Gradient descent

“““““““““
““““““

/|

.

e ‘.’\
'\\ .

step size = learning rate

Visualization - Gradient descent

6 _ good learning rate

u T I]] Ll) I T 1 1 | I)] Ll) ul Ll I) L I]] | Ll l 1 1) 1] lil._l

H

isualization - Gradient descent

6 learning rate too big

D] l]] I 1 I I 1 1

M
] 1] I_ll 1]] 1 l 1 I 1 1 I 1 1] 1] ID

L

[
/

| T
1.0
]
0.5
0.0
-0.5
) i 1 ! | -1.0

Visualization - Gradient descent

learning rate too small

D]] T] l] l Ll 1 1 I I) 1) I_ll 1)) 1 I 1 T 1 1] 1 1) 1 I l‘{j

Gradient Descent - Loss functions

» For regression:

1 N

+ MSE (Mean squared error): Luse = — ¥ [y(zi) — fo(z)]°

N “
1—=1

+ MAE (Mean absolute error): 1, .y = Z y(zi) — fo(z:)]

N
+ MAPE (Mean absolute percentage error): Lwvape = %Z y(mi(;i];e(m
i=1 ¢

» For classification:

N
+ Binary cross-entropy: Lgxg = %Z (zi) log(fO(x;)) — (1 —y(x;))log(1 — fO(x;))

Gradient Descent - Detalls

» NN = composition of maps = use chain rule for derivatives

» At each layer of the NN, we want the gradient for each point in the dataset

» We introduce the following notation:

post-activation layer index Pre-activation of layer ¢ + 1

oflayerz’+1\ J / \ n;

oli+1) — a“*”(ij*”) with Z(z+1 Z w(’“)f

4

th . . :
p neuron activation function

Jupyter Notebook Presentation

NN approximating a function

Create dataset:

x =[-2,2], y=sin(e*)+ cos(x)

In [2]: f.cast(np.arange(-2, 2, .01), dtype=tf.float32)
f.sin(tf.exp(x)) + tf.cos(x)

Plot the dataset

In [3]: igure(1)
catter(x, y);

20 -

15 1

10 1

0.5 1

0.0 1

-1.0 1

Setup a NN to learn this function

In [4]: tf.keras.Sequential()
ut layer
d(tfk.Input(shape=(1)))

Gradient Descent - Detalls

» NN = composition of maps = use chain rule for derivatives
» At each layer of the NN, we want the gradient for each point in the dataset

» We introduce the following notation: ¢+ = o™y with 20D =) " w0ed 4 pitD

v=1

» [hen: 02y _ y(n—1) for () — 4,(1)
(n) owly ’ e
. oL 0L 9z Oz~ v Known from
90(n) — §z(n) gen) € y(n) 9z forward pass
=0, for 6" = pn)
(n) p or v, v
/ 0by,
OL\SE 2

= {y _ a<n>(z<n>)} o™ (™)
o n

Gradient Descent - Detalls

» NN = composition of maps = use chain rule for derivatives
» At each layer of the NN, we want the gradient for each point in the dataset
» We introduce the following notation: ¢+ = gtz with z(’“)—i:w(‘“)e + bt

v=1
» [hen:

s+ OL oL |0z
() | 929 921
00 Z <L g(n 2) for 6, _w(n)

(n—1)
0L oL | 9-(n) §y(n—1) azlgn—l) Ow,,
+ n—1) n n—1 n—1 (n—1) — (n—1)
%! | 92|02) 90!) 00, az“ — 6,uu for 0, = b,gn)

\ op)

known from forward pass
(Z w(n 1) 0L)a/(nl)((n—l)) P

Dz,

Gradient Descent - Detalls

» NN = composition of maps = use chain rule for derivatives

» At each layer of the NN, we want the gradient for each point in the dataset

» We introduce the following notation: ¢ = gtz with 20+ Zw““)e
» Then:
. OL oL 9z

90 — §z(n) o)

0L B oL Oz |§z(n—1)
+ 5001 | 9200 gzn—D|ggtn—1)

OL B oL 0z |§z(n—1) §r(n—=2)
4 5’9(?1—2) - az(n) az(n—l) 8Z(n—2) 8(9(”_2)

1)

Gradient Descent - Detalls

» NN = composition of maps = use chain rule for derivatives

» At each layer of the NN, we want the gradient for each point in the dataset

» We introduce the following notation: €+ = ot D(zH*D) with 20+ = ing”eg%rbg“)
, Then: B

. OL OL 0z

06 — 9z(m) 9™ GD parameter update

oL | oL 9z |9z(n~ 1) 9
0\ — 0V — « Y10
oL | OL 0z |9z(n=1) 9z(n—2)
* 902 7| 9z(n) 9z(n-1)]9z(n=2) HH(n—2)

Gradient Descent - Consequences

» Most of what we need in backward pass has been computed in forward
pass or can be trivially computed

» ...but we need o’ (z(—1)

» Common activation functions have o/ = f(a'?), so reuse from fwd pass

1.0}

0.8}

a(x) = ReLU(x) = max(0, x)
a'(z) = 0(x)

Gradient Descent - Consequences

» NN are typically used in big data applications

» Ca

n parallelize over input-output-pairs

e O(10) cores on CPUs
e (O(10k) cores on GPUs

» But not all input-output-pairs can fit into memory simultaneously

» Batch data into mini-batches and perform updates after each mini-batch
(typically batch size is O(10)-O(100))

il

s leads to stochastic GD (since we are not optimizing on entire loss landscape

bu
» Thi

- only on a subset computed from each batch)

s can In fact help overcome local minima and saddles, but hinders

parallelization

Gradient Descent - Consequences

4

4

4

O-'lU

Gradient at layer ¢ proportional to gradient at layer ¢ + 1

Get vanishing / exploding gradients at earlier layers

Counter: Edge of chaos initialization, gradient/weight clipping, batch
norm, skip connections (UNET, ResNET), ...

40

35 0.9
. Chaotic phase 0.8
> 0.7
25 —t
© 06
20 8 0.5
O ’
< 04 e depth=1250
1.5
Ordered phase 03 e depth=2500
depth=5000
1.0 0.2 ——— depth=10000
05 0.1
10° 10* 10° 10°

0.0
0 1 2 3 - o

o, |Hayou, Doucet, Rousseau 19] [Xiao et.al. "18]

Gradient Descent - Consequences

» Gradient at layer ¢ proportional to gradient at layer ¢ + 1

» Dying RelLLU problem: ReLU(z) = ReLU'(z) =0 for = <0

» RelLU can die and not activate other layers; updates are zero as well, so
this behavior won't change

X if >0
» Combat with leaky RelLU: leaky ReLU =
Ol zx if <0

» [0 a lesser extent the same can happen to sigmoid:

o(z)~o'(x)~0 for <1

N x

Positional
Encoding

s

Add & Norm

Feed
Forward

A

\

Add & Norm

Multi-Head
Attention

A_t

\.

J

Sa

Input
Embedding

I

Inputs

Output
Probabilities

|

Softmax

t

Linear

4

| |
Add & Norm

Feed
Forward

4

Add & Norm

Multi-Head
Attention

7 7 7

N x

Add & Norm

Masked
Multi-Head
Attention

\.

A_t)

=

al

Output
Embedding

I

Outputs

(shifted right)

Positional
Encoding

Figure 1: The Transformer - model architecture.

Multi-Head Attention

Scaled Dot-Product Attention

[Vaswani et.al. 17]

The transformer architecture

Output
Probabilities

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm
Feed
Forward

Add & Norm

N —~(AddE Norm_
Add & Norm asked
Multi-Head Multi-Head
Attention Attention
1 J 1 J
Positional Positional
: ‘ S ‘ .
Encoding Lt QS Encoding
Input Output
e Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

NLP and input embedding

» The goal of NLP Is to produce a sequence of outputs from a sequence of inputs

» In order to feed words/characters of natural languages to a NN, we need to represent each word/
character as a vector in R"™i»

» A simple way of doing this is as follows:

* Tokenize the words/alphabet:
+ Take a dictionary (with 10k unique English words, say) and enumerate each word from 1 to 10k.

+ assign to each word a 10'000-dim vector, which has a 1 at position | and zeros everywhere else

a 1/0/0}--0/0 Aardvark [0|1/0/---/0|0 Zyzzyva |0/0/0/- 01
» Multiply this 10k-dim vector with a 512 x 10k matrix to produce a vector in R°**
/61,1 .+« €10000,1 \ g) /61,1 \ /61.,1 6100.00,1 \ 8 /6100.00,1 \
: O] = . O] =— :
\617512 . 610000,512/ . \61,512/ \61,512 e 610000,512/ ; \610000,512/

 [earning the entries of this matrix allows to learn “useful” embeddings

Examples of learned embeddings

Germany =
man walked =~ Berlin
&) O Turkey \
O , _ woman | L
swam .
klng . O Russia M Ak
*‘ walking O Canada Ottawa
queen . % vap Toky
- O Vietnam Han
swimming China Beijing
Male-Female Verb tense Country-Capital

[Image Credit: Tensorflow]

. earns semantics

‘gueen - woman + man = King’

Output
Probabilities

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm
Feed
Forward

Add & Norm

N —~(AddE Norm_
Add & Norm asked
Multi-Head Multi-Head
Attention Attention
1 J 1
Positional Positional
. ‘ & ‘ .
Encoding Lt QS Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Positional empbedding

» A fully connected
to all other nodes

layer has no notion of position: each node Is connected

» But position of words in a sentence is very important:
The scientist eats the chicken # The chicken eats the scientist

» Add a (time-modu

ated) signal to each embedded word to signal its

position In the sentence. The NN will learn to use it

.) . — 2'i/dmodel
PE(pOS,Q,L-) = sin(pos/ 100002¢/ dmode‘) , PE (pos 2i+1) = cos(pos /10000)
sin(0) sin(1/100000/%12) sin(2/100000/512)
cos(0) cos(1/10000°/°12) cos(2/10000%/512)
+ L1 sin(0) + | sin(1/10000%/512) | n 1 sin(2/10000%/°'%)
| cos(0) T cos(1/100001024/512) c0s(2/100001024/512)

The

sclentist eats

Output
Probabilities

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm
Feed
Forward

Add & Norm
_Add & Norm
Add & Norm asked
Multi-Head Multi-Head
Attention Attention
1 1 J
Positional Positional
. ‘ & ‘ .
Encoding Lt QS Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

—Nncoding

» Now we have an encoded sequence of words with temporal information

» Just as In a deep NN, we now keep encoding this sequence over and
over, feeding the output of the last encoder to the input of the next

» Repeat (6 times in the paper) until the NN has learned a good encoding

s — Encoder
~>| Add &INorm]
Feed - £ ~
Forward Fncoder > Add & Norm]
\ f Feed
| Forward
Nx | —(Add & Norm] Fncoder L 3
Multi-Head i — |
’ Attention l with Encoder ~—>| Add &INorm)
v Encoder Multi-Head
& y, Attention
Positional A *)
Encoding @% Encoder - | J
Input
Embedding Encoder

Inputs

Output
Probabilities

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm
Feed
Forward

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

1 J
Positional Positional
Encoding QO ca QY Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Self-attention

» SO each encoder layer consists of attention heads and a vanilla feed-
forward layer (and normalizations and skip connections for better training
performance)

Multi-Head Attention Scaled Dot-Product Attention

Add & Norm

Add & Norm

Multi-Head
Attentlon

The

Self-attention |

r Multi-Head Attention
4) 4

» As illustrated, we create 3 copies of each input vector, R
denoted by V(value), K(ey), Q(uery) _ W— P
~)
» This is done for all input vector (i.e. each encoded word) sy S5
in the sequence =) | |

» Then, each copy V, K,Q goes into a feed-torward layer (i.e., matrix multiplication,
where the entries of the matrix are learnable parameters)

(44 29
V1,1 c .. V512.1 Ul(The) V1,1 . .. U512,1 vl(“scientist”) U11 S U512,1 'Ul(“eats”)
V1.64 “ .. U512.64 v64(“The”) U1.64 “ . U512.64 « -. SR U1.64 “ . U512.64 cc. 99
> 64/ The ’ > - ve4(“scientist”) ’ ’ vg4(“eats”)

scientist eats
(kl,l o]C512,1) (kl(“The”)) (kl,l c e k51271) / kl(“scientist”) \ (kl,l c e k512,1) (kl(“eats”))
Fie6a ... FKs1264 kea(“The”) kie6a ... Fksinea) L1 \]%4(“seientist”)/ k164 ... Kksi2.64 kea(“eats”)
The sclentist eats

(ql(cceatsw))
Qo4 (“eats”)

(C]m ... Q5121) (%(“The”)) (C]1,1 ... Q5121) (ql(“scientist”) \ (Q1,1 . Q5121)
g1,64 --- q512,64 go4(“The”) q1,.64 --- Q512,64 [\ g6 (“scientist”) / G164 --- (512,64
The scientist eats

Self-attention ||

» The set of 64-dim vectors (¢(word;), k(word;), v(word;)) are then used to compute a score
between the current word and all other words In the input sentence.

» The higher the score the more relevant the other word is for understanding the current
word

Scaled Dot-Product Attention

1

» This score (or attention) is computed as follows:

* Take the dot product (think “overlap” of the encoded words) between the [vatvu)
query and the key for all words in the input sentence m'm]
. i
e Scale it down by v/64 to avoid too big gradients, and optionally mask future [Mesk (opt,]
iInputs such that you can only pay attention to what has been seen already FL]sCa|e
(for decoder) [Tatfm
 Take the softmax to convert the “overlaps” to probabilities é f< v

* The resulting score tells you how relevant other words in the sentence are for understanding
the current word

 Multiply the value of all words with this score and sum them all up to get a (superposition of)
words which one should pay attention to for understanding the ftirst word. Rinse and repeat

Self-attention [l

Scaled Dot-Product Attention

» [N matrix notation, the scaled dot-product attention head Is 1
fMatMuI
T SoftMax
Attention(Q, K, V') = softmax(QR)14 Mask:(opw
vV dk- SC:le
éMatMLi V

» Repeat this attention step in parallel for 8 different

(learnable) matrices Q,K,V (“multi-heads”) Mol Bl At
. | | mtear
» The resulting 64-dimensional vectors from each head are s
put into one large vector of dimension 64 x 8 = 512 Smraa),
1 I 1 I 1
» This vector Is fed into a fully-connected layer (with output e) {Lar (e

dimension 512, so that it can fit into the next encoding layer T
with the same architecture

Self-attention example

The

will

never
be
perfect

but

its
application
should

be

just

this

is

what
we

are
missing

in
my
opinion

<EOS>
<pad>

The
Law
will
never
be
perfect

but
its

application

should
be
just

this

is
what
we

are
missing

in
my
opinion

<EOS>
<pad>

application

The

Law

will
never

be
perfect

but
its

should -
be
just

this
IS
what =
we
are

missing

in

my&
opinion

<EOS>

<pad>

v Figure 4: Two attention
et heads, also in layer 5 of
» 6, apparently involved in
ts anaphora resolution.
R Left: Isolated attentions
o from just the word ‘its’ for
this attention heads 5 and 6.
c Note that the attentions
we are very sharp for this
:;sing word.

n Right: Full attentions for

ZB;ﬂon r1<E>Ei(:I‘ES.

<EOS>
<pad>

Summary of encoder

| The, scientist, eats, the, chicken, eos]

Add & Norm

N Add & Norm
Multi-Head
Attention
U

Positional ;‘

Encoding ‘« &

Input
Embedding

.
R -
SR
R } - N
ERY T AFTTNE A =
7.
Ay
(P

Summary of encoder

€10000,1 \

610000,512/

The

€10000,1 \

610000,512/

scientist

€10000,1 \

610000,512/

eats

/61(“The”) \

\6512 (“.The”)/

[e1(“scientist”) \

\6512 (“sc.ientist”) /

[e1(“eats”)

\6512 (“eats”)/

Add & Norm

Add & Norm
Multi-Head
Attention
L1+ S

N x

Positional
Encoding

Input
Embedding

Inputs

Summary of encoder

[er(*The”) \ sin(0) Add & Norm
: cos(0) —
: + sin(0)
\6512 (“Lhe”)/ cos(0)
'The)
N Add & Norm
“aciontict” in(1/10000%/512 7
/ e1(“scientist”) iZZE1§100000/512§ Multi-Head
. + - Sin(1/100002/512) — Attention
\6512(“SCieDtiSt”)/ - 008(1/100001024/512) --
sclentist "
‘) Positional
Encoding ‘v
L 7 sin(2/10000%/512
/ e1(“eats”) \ 008é2?100000/512§
: + L[] sin(2/10000%/°12) — Embedding
\6512 (“eats”) / | cos(2/100001024/512)

leats) Inputs

Summary of encoder

Add & Norm

— (W,|The), Wi|The), W, |The))

The (pos encoded)

o o o OKT Multi-Head
—» (W, |scientist), Wj|scientist), W, |scientist))—» softmax(Vi)17 Apfertion
g 1
scientist (pos encoded)

Positional
Encoding

QU
Input

Inputs

—» (W, |eats), Wi|eats), W, |eats))

eats (pos encoded)

Summary of encoder

T
Layer_norm(softmax(QK

Vdr
QK"

Laver norm(softmax
yer_ ((S

T
Layer_norm(softmax(QK

Vdi
QK"

Laver norm(softmax
yer_ ((7

KT
Layer_norm(softmax(Q

Vdi

KT
Layer_norm(softmax(Q

Vdi
QK"

Laver norm(softmax
yer_ ((7

KT
Layer_norm(softmax(Q

Vdy

V+ |The))
V+ |The))

V+ |The))

V+ |The)) k‘

V+ |The>)/

V+ |The))

Multi-Head
Attention

(D — |mha("The))

Positional
Encoding

Input
Embedding

Inputs

V+ |The))

V+ |The))

Summary of encoder

Add & Norm

— Feed
|47 | Forward

Add & Norm
Multi-Head
Attention
1+

Positional
Encoding

qeLU(Wﬂmha(”The”)} -+ bl) + b2 — |tmha(”The”)>

O
Input

Inputs

Summary of encoder

Multi-Head
Attention
Layer_norm([tmha(”The”)) 4+ |mha(”The”))) 1

Positional
Encoding

Input
Embedding

Inputs

Output
Probabilities

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm
Feed
Forward

Add & Norm

N —~(AddE Norm_
Add & Norm asked
Multi-Head Multi-Head
Attention Attention
1 J 1
Positional Positional
. ‘ & ‘ .
Encoding Lt QS Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Decoder

» In a sequence to sequence task like translation, the

decoder needs its own output and the (encoded)
input it should translate

» The first multi-head attention computes an attention

SCOore

embedding from its own previous outputs

r

4 ™)
~>| Add & Norm
Feed
Forward
A
G
Nx | —~(AddaNom)|
At 2
\
.
Positional N
Encoding
Input
Embedding
Inputs

Output
Probabilities

|

Softmax

|

Linear

4

Add & Norm

|

Feed
Forward

)

Add & Norm

Multi-Head

Attention

T J 7

N x

Add & Norm

ninasinddld | Multi-Head

Masked

Attention

.

A_t

=0

al

|

Output
Embedding

T

Outputs

(shifted right)

Positional
Encoding

Figure 1: The Transformer - model architecture.

Decoder

» In a sequence to sequence task like translation, the
decoder needs its own output and the (encoded)
input it should translate

» The first multi-head attention computes an attention
score+embedding from its own previous outputs

» [he second multi-head attention takes this as the
query and uses the output of the next word from
the encoder as key and value

» Based on this, It computes another attention score,
which Is then used again in a FFNN

e

e

" Feed

Forward

—>{_Add & Norm j\ !

-
:
.

)

A

N x

Add & Norm

Multi-Head

Attention

A

t

\
.

|

2

J

Positional
Encoding

Sa

|

Input

Embedding

I

Inputs

Output

Probabilities

|

Softmax

|

Linear

A

Add & Norm

Feed
Forward

)

Add & Norm

Multi-Head
Attention

) J

N x

Add & Norm

Masked
Multi-Head
Attention

.

A_t

=

al

|

Output
Embedding

T

Outputs

(shifted right)

Positional
Encoding

Figure 1: The Transformer - model architecture.

Decoder

» After repeating this decoding step 6 times, the

512dim output Is put Into a
dimension 10k x 512

inear layer of

Add & Norm

Feed
Forward

|

A

N x —

Add & Norm

|

Multi-Head
Attention

\

A_t

.

Output

Probabilities

|

Softmax

|

Linear

A

(
Add & Norm

|

Feed
Forward

)

Add & Norm

Multi-Head
Attention

T J 7

N x

Add & Norm

Masked
Multi-Head
Attention

J

Positional N
Encoding ®_(f)

|

Input
Embedding

1

Inputs

.

A_t

=0

o Positional
Encoding

|

Output
Embedding

(shifted right)

T

Outputs

Figure 1: The Transformer - model architecture.

Decoder

» After repeating this decoding step 6 times, the

512dim output Is put into a linear layer of
dimension 10k x 512

» Then we take the softmax to obtain a 10k-dim
vector of probabilities which word to use next

Output
Probabilities

|

Softmax

|

Linear
A

f
Add & Norm |~

Feed
Forward

)
1 | |
- ~ Add & Norm J<~
—> Add & Norm Multi-Head
Feed l Attention
Forward 3
- ¥—Ljf_} y

Add & Norm Je—

Nx | —fAdd & Norm

I Masked

Multi-Head Multi-Head

Attention Attention

A4+ 2 A+ 2

S J <)

Positional Positional
. + - :
Encoding (B_® Encoding

Input Output

Embedding Embedding

Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Decoder

cmemeomdl o opabiics

» After repeating this decoding step 6 times, the g s
512dim output is put into a linear layer of B
dlmenS|On].Ok >< 5].2 Add&.Norm }4—\\

[Fgr?/\?:rd l

» Then we take the softmax to obtain a 10k-dim | ===

vector of probabilities which word to use next s | ﬂ;\“e;‘“i, ||
, ' ' & Add & Norm —

» In greedy decoding, the word with the highest TR INEE
probability is chosen from the 10k dictionary entries | —=— | | ——_J
and added to the output cncoding QO) Ereoting

’ Emlt;]g;;ing l Err?buetgtdj;[ng
1 T
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Decoder

» After repeating this decodir
512dim output Is put into a
dimension 10k x 512

g step o6 times, the
inear layer of

» Then we take the softmax to obtain a 10k-dim ——F
vector of probabilities which word to use next -y
» In greedy decoding, the word with the highest =
probability is chosen from the 10k dictionary entries | —=—
and added to the output crcoding Q9
| Embesting
» Then the decoding step Is repeated with the new]
output that contains this new word, and the next .

word to translate from the encoder

Output
Probabilities

|

Softmax

|

Linear

A

Add & Norm

Feed
Forward

1

Add & Norm

|

Multi-Head
Attention

2

) J

N x

Add & Norm

Masked
Multi-Head
Attention

.

A_t

=

al

|

Output
Embedding

T

Outputs

(shifted right)

Positional
Encoding

Figure 1: The Transformer - model architecture.

Recap - NN for regression and classification

{OZ/ANVAN AV SN
O \\v‘vf‘\v‘vf‘ ,,.;b, l
RS RE R
7 LA ‘t" i.‘\" % "

W N)

/‘o" X ‘X"Qo‘ f

0
/N

Recap - Training with GD

40

3.5

Chaotic phase

3.0

295

20

O-'lU

1.5

Ordered phase

1.0

GD parameter update

o) s gl _ 8L 1 2 3 4 |
99 ”

0.5

Recap - Transformer

Male-Female

L earns semantics

‘gueen - woman + man = King”

Output
Probabilities

|

Softmax

i

Linear
A

Add & Norm

Feed
Forward

)

Add & Norm

Feed
Forward

A

N x

\

Add & Norm

Multi-Head
Attention

At

.

Add & Norm

Multi-Head
Attention

|77 7

N x

Add & Norm

Masked
Multi-Head
Attention

A_t

J

Positional
Encoding

Oa

Input
Embedding

T

Inputs

J

\.

J

ras

Output
Embedding

T

Qutputs
(shifted right)

Positional
Encoding

Figure 1: The Transformer - model architecture.

Scaled Dot-Product Attention

|

[Matvul |

) A

[SoftMax]
{

[Mask (opt.)]
)

[Scale]

| MatMul I

1
K

1
Q v

Multi-Head Attention

Linear

[Concat]

Scaled Dot-Product
Attention

.want to learn more”?

Image credit: wikimedia commons

Jan 14-19, 2024
Aspen Center for Physics
US/Mountain timezone

e Fields, Strings, and Deep Learning

Timetable

Progress in deep learning has traditionally involved experimental data, but in recent years it has
impacted our understanding of formal structures arising in theoretical high energy physics and pure
mathematics, via both theoretical and applied deep learning. This conference will bring together high

Registration and
Accommodation

Travel and Visas energy theorists, mathematicians, and computer scientists across a broad variety of topics at the
Local information, interface of these fields. Featured topics include the interface of neural network theory with quantum
Transportation, Skiing field theory, lattice field theory, conformal field theory, and the renormalization group; theoretical

physics for Al, including equivariant, diffusion, and other generative models; ML for pure
mathematics, including knot theory and special holonomy metrics, and deep learning for applications
Poster in string theory and holography.

ML Meetings @ Caltech Aspen Winter Conference

- Dec 10-12: Mathematics and ML 2023 - Jan 14-19: Fields, Strings, and Deep Learning
- Dec 13-15: string_data 2023 Application deadline: Aug 31

Block Award

Thank you - Questions”

Input layer

Ll

0D veY:

N %O
0\

Y
VA

@i /m% g a oal;
AY.

Hidden layers
ey mmmm—————-

N\ /)
\/

(/

R
s

O
r

“V
X

utput layer

e

Add & Norm

Feed
Forward

A

N x

.

Add & Norm

Multi-Head
Attention

At

L

Output

Probabilities

|

Softmax

|

Linear

)

| |
Add & Norm

Feed
Forward

)

Add &lNorm

Multi-Head
Attention

7 7 7

N x

Add & Norm

Masked
Multi-Head
Attention

J

Positional
Encoding

Oa

Input
Embedding

T

Inputs

&

At

J

J

6?—@

Output
Embedding

I

Outputs

(shifted right)

Positional
Encoding

Figure 1: The Transformer - model architecture.

king

Chaotic phase

man

o

@ \.* woman
-~ : .
S
O
queen
—
Male-Female

Ordered phase

