Lecture 2 Intro to RL

Fabian Ruehle (Northeastern University \& IAIFI)

ML in Maths and Physics 2023
University of Oxford

17-21 July 2023

Question:

Can this knot be untangled?

Outline

Why are some problems hard?

2 Intro to Reinforcement Learning

Recap

3
Intro to Knot Theory

入an

Why are some problems hard?

Computational Complexity

- Problems from discrete mathematics are ubiquitous:
- In mathematics they appear in group theory, number theory, graph theory, topology,...
- In physics they appear in any quantum theory
- These problems involve the following:
- You are given some (mathematical) object
- There is a number (need not be big) of manipulations you can do to the object
- The correct sequence of manipulations will answer whether the problem has a solution in the affirmative
- But there are exponentially many possibilities to combine the manipulations, so brute forcing the problem will take exponentially long

Computational Complexity - Examples

Traveling Salesman

Knapsack Problem

Are there more efficient solution techniques?

- Problems that can be solved in polynomial time (=fast) are in the complexity class P
- Problems that can be verified in polynomial time are in the complexity class NP
- Question: Do there exist problems in NP that are not in P, i.e., $P \neq N P$?
- Open (millennium prize) problem
- Multi-trillion dollar bet against $P=N P$
- Fact: There exist problems (like Knapsack, TSP) that are "as hard as it gets" within NP: If you can solve this problem in polynomial time, then you can solve any problem in NP in polynomial time by reducing it to this problem.

Other complexity classes

- There are problems that, given a potential solution, cannot even be verified in polynomial time
- This leads to a hierarchy of successively harder complexity classes:

$$
\mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXPSPACE} \subseteq \text { DECIDABLE }
$$

- But that is as bad as it gets ...right?
- There exist undecidable problems, for example the halting problem: Write a computer program that, given some code as input, decides whether the input code halts eventually or runs forever...
- Also Diophantine equations are undecidable

$$
a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \stackrel{?}{=} 0
$$

Binary Classification?

Question:

Can this knot be untangled?

Binary Classification

F Can you define binary classification in 3 sentences

Binary classification is a type of supervised machine learning task where the goal is to classify input data into one of two mutually exclusive classes or categories. It involves training a model on labeled data to learn patterns and features that differentiate the two classes. The model then predicts the class label of new, unseen instances based on its learned knowledge.

1

0

0

1

Binary Classification

... but in practice this happens:

- So it is 94% unknot?
- Even if the answer was 100% unknot, and we wouldn't know how/why the NN says that)
...coming back to computational complexity

Go has $19 \times 19=361$ actions but $3^{361}=10^{170}$ different states. Impossible to brute-force. Also, asking "can you win from this position" would be useless

Intro to Reinforcement Learning

Reinforcement Learning - Intro

- $R L$ is a way to deal with combinatorially large search spaces
- Instead of trying all combinations by brute force (which would require visiting all states), you train a policy NN that learns some policy according to which it decides for you which state to visit next

- To do so, RL solves a Markov Decision Problem, meaning once a certain state is reached, the next action is independent of how it was reached

Reinforcement Learning

- Task: Find sequence of actions that optimize a process

Reinforcement Learning

- Task: Find sequence of actions that optimize a process

Reinforcement Learning

- Task: Find sequence of actions that optimize a process

Reinforcement Learning

- Task: Find sequence of actions that optimize a process

Reinforcement Learning

- Task: Find sequence of actions that optimize a process

Reinforcement Learning

- Task: Find sequence of actions that optimize a process

Reinforcement Learning

- Task: Find sequence of actions that optimize a process

Reinforcement Learning

- Task: Find sequence of actions that optimize a process

Reinforcement Learning

- Task: Find sequence of actions that optimize a process

Reinforcement Learning

- Task: Find sequence of actions that optimize a process

Reinforcement Learning

- Task: Find sequence of actions that optimize a process

Reinforcement Learning - Vocab

- Environment: Set of states and actions on these states $\mathcal{E}=\{\mathcal{S}, \mathcal{A}\}$
- States: Set of possible "configurations", $\mathcal{S}=\{s\}$ Can be discrete (finite or infinite), or continuous
- Actions: Set of actions that transition between states. Can be discrete (finite or infinite), or continuous. $\mathcal{A}=\{a \mid a: \mathcal{S} \rightarrow \mathcal{S}\}$ In my experience, RL shines for huge state spaces but modestly large action spaces
- Terminal states: Subset of states for which no action is possible (the search has ended) $\mathcal{S} \supset \mathcal{T}=\{t \in \mathcal{S} \mid a(t)=\emptyset\}$
- Episode: A sequence of states and actions that ends in a terminal state

$$
E=\left[\left(s_{1}, a_{1}\right),\left(s_{2}, a_{2}\right), \ldots,\left(s_{n}, \emptyset\right)\right], \quad a_{i} \in \mathcal{A}, s_{i} \in \mathcal{S} \backslash \mathcal{T}, s_{n} \in \mathcal{T}
$$

Reinforcement Learning - Vocab

- Policy: Describes how the agent selects an action given its current state $\pi: \mathcal{S} \rightarrow \mathcal{A}$
- Deterministic policy: a is determined uniquely from s
- Non-deterministic policy: multiple s are possible for the same a
- Reward: The feedback given to the agent for following policy π. Usually the reward $r \in \mathbb{R}, \quad r: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$
- Return: accumulated reward from current position onward: $G=\sum_{t=0}^{\infty} \gamma^{t} r_{t}$
$0<\gamma \leq 1$ is the so-called discount factor. Note that G depends on π

Reinforcement Learning - Vocab

- State value function: Expected return from current state onward when following policy $\pi: v(s)=\mathbb{E}\left(G_{t} \mid s=s_{t}\right)$
- Action value function: Expected return for choosing action a_{t} in state s_{t}

$$
q(s, a)=\mathbb{E}\left(G_{t} \mid s=s_{t}, a=a_{t}\right)
$$

- We need to find an estimator for the best state value function, action value function, and for the policy itself. These are inter-dependent and in RL (at least some) are approximated by a NN:
- policy: Show a state to a NN and have it predict which action to take next
- state value function: Show the state to a NN and have it predict how good the state is, i.e., how much return to expect from being in this state
- action value function: Show the state and action to a NN and have it predict how good the action is in this state

[$1,-2,3,-4,5,-6]$

[1,1,1]

[4,6,2]

Intro to Knot Theory

Motivation

[Witten `89] [PFN Faisca `15]
[Kucharski, Reineke, Stosic, Sulkowski `17]

Is every 4D manifold that is homotopy equivalent to a 4-sphere diffeomorphic to the standard 4 -sphere?
[Poincare 1904]

Knots - Definition

Definition (Knot):
A knot is an embedding of a circle into the three-sphere.

Knots - Representations

Which representation to choose?

- In principle it should not matter: There exist algorithms to transform one representation to another; in practice, there are different aspects to this:
- CS
- Which representations are most efficient, and does the ML algorithm make use of efficiency in encoding?
- Can the problem be recast in a form that resembles problems that have been attacked by the CS community
- Math
- Does a representation have a beneficial property that others do not?

Example 1: Efficiency of encoding

- The number of crossings in a knot projection is larger than the number of points needed to specify the knot in 3D [Bar-Natan, Bar-Natan, Halacheva, Scherich `21]
- This means that some quantities can be computed faster in 3D than in 2D.

 $\begin{aligned} & 12 \\ & -8,-9,-10]\end{aligned},-8,11,-14,-7,9,-13,-15,10,-12,-14,-16,9,-13,-15,8,-14,7,9,8,-7,-9,7,-8,-9,10,9,-11,-10,-12,-9,-11,-13,-8,-10,-12,7,-11$,

Example 2: Transformation to other problems

- Different representations encode topological info in different ways (e.g. braid words can be read left to right, DT codes are harder to "picture")
- Braid words might lend themselves to ML techniques developed for Natural Language Processing
- Grid Diagrams to ML techniques developed for Computer Vision or Graph Networks
- Example: Unknot recognition problem

Empirical observation: Braid words work better than Gauss or DT

- Perhaps the sequential representation is "less confusing" for the neural network even though the description is less efficient [Gukov, Halverson, FR, Sulkowski ${ }^{20]}$

Example 3: Mathematical properties of representation

- There are hard unknots that require adding braid generators (crossings) before being able to simplify
[Kauffman, Lambropoulou `06; Tuzun, Sikora `16; Burton, Chang, Löffler, Mesmay, Maria, Schleimer, Sedgwick, Spreer `21]
- Is this property preserved under maps such as Vogel's algorithm?
- On specific knots, is one representation simpler than another? Does the algorithm benefit from seeing both representations?
- This property is absent in Grid Diagrams with Dynnikov moves [Dynnikov `o6]
- Kauffman et.al. used this to design an ML algorithm that monotonically decreases CrOSSingS [Kauffman, Russkikh, Taimanov `20]

Can my algorithm deal with the fact that it needs to make knots more complicated to ultimately simplify them further?

Recap

- Hierarchy of hardness
- Combinatorially hard problems in NP good for RL

2
Reinforcement Learning

- Solve MDP
- Approximate policy, SVF, AVF by NN

Intro to Knot Theory

- Knot is $S^{1} \hookrightarrow S^{3}$
- Representation of data informs algorithm and NN architecture:
- RL vs monotonic optimizer
- CNN vs Transformer vs ...

