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Motivation

Question:
 
Can this knot be 
untangled?
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‣ Problems from discrete mathematics are ubiquitous: 
• In mathematics they appear in group theory, number theory, graph theory, topology,… 

• In physics they appear in any quantum theory 

‣ These problems involve the following: 
• You are given some (mathematical) object 

• There is a number (need not be big) of manipulations you can do to the object 

• The correct sequence of manipulations will answer whether the problem has a solution 
in the affirmative 

• But there are exponentially many possibilities to combine the manipulations, so brute 
forcing the problem will take exponentially long

Computational Complexity



Computational Complexity - Examples

Integer Factorization
Traveling Salesman

Knapsack Problem
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Are there more efficient solution techniques?
‣ Problems that can be solved in polynomial time (=fast) are in the 

complexity class P 
‣ Problems that can be verified in polynomial time are in the complexity 

class NP 

‣ Question: Do there exist problems in NP that are not in P, i.e., P   NP? 
• Open (millennium prize) problem 

• Multi-trillion dollar bet against P=NP 

• Fact: There exist problems (like Knapsack, TSP) that are “as hard as it gets” within 
NP: If you can solve this problem in polynomial time, then you can solve any 
problem in NP in polynomial time by reducing it to this problem.

≠



Other complexity classes
‣ There are problems that, given a potential solution, cannot even be 

verified in polynomial time 
‣ This leads to a hierarchy of successively harder complexity classes: 

‣ But that is as bad as it gets …right? 
‣ There exist undecidable problems, for example the halting problem: 

Write a computer program that, given some code as input, decides 
whether the input code halts eventually or runs forever… 

‣ Also Diophantine equations are undecidable
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Binary Classification?

Question:
 
Can this knot be 
untangled?
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LMOV invariants as counting open M2-branes ending on M5-branes. However, integrality of

these invariants has been verified only in some specific cases e.g. in [2–4, 7, 8], as well as for

some infinite families of knots and representations [9,10]. In particular, in [10] the relation of

the framed unknot invariants (equivalently extremal invariants of twist knots, as well as open

topological string amplitudes for branes in C3 geometry) to motivic Donaldson-Thomas in-

variants of the m-loop quiver was found, which led to the proof of integrality of BPS numbers

in those cases; this relation was then analyzed and discussed also in [11, 12].

Reducing the above mentioned open M2-brane states to their worldvolume is expected

to lead to a description in terms of N = 4 supersymmetric quiver quantum mechanics.

We find this quantum mechanics description by postulating that the Ooguri-Vafa generating

function should be identified with the motivic generating series assigned to a putative quiver.

Factorization of such a series defines motivic Donaldson-Thomas invariants, which also have

an interpretation as the counts of BPS states [13,14]. If a quiver in question indeed exists, it

is natural to identify these BPS states as the e↵ective description of M2-M5 bound states in

the Ooguri-Vafa description. As our main result – announced already in [1] – we show that

the Ooguri-Vafa generating series indeed takes the form of the motivic generating series for

some quiver, and we identify such quivers explicitly in various cases. For example, the quiver

corresponding to the trefoil knot is shown in figure 1.

BPS states that arise in the quiver description can be interpreted as elements of Coho-

mological Hall Algebras [14–16], which provide prototype examples of algebras of BPS states,

whose existence was postulated in [17]. These structures are intimately related to the theory

of wall-crossing and associated phenomena, which led to important results both in physics

and mathematics in recent years. In our work we take advantage of some of those results,

as well as suggest new directions of studies. For example, it has been proved that motivic

Donaldson-Thomas invariants assigned to a symmetric quiver are integer [18]. Our results

lead to the identification of LMOV invariants with motivic Donaldson-Thomas invariants

for symmetric quivers, which thus proves integrality of these LMOV invariants. More pre-

cisely, for knots for which we identify the corresponding quiver, the LMOV conjecture for

all symmetric representations is automatically proved. This is already an important result,

Figure 1. Trefoil knot and the corresponding quiver.
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Binary Classification
… but in practice this happens:

0.96

0.04

‣ So it is 94% unknot? 
‣ Even if the answer was 100% unknot, and we wouldn’t know how/why 

the NN says that)



…coming back to computational complexity

…

Go has                      actions but                     different states. Impossible to brute-force.  
Also, asking “can you win from this position” would be useless

<latexit sha1_base64="w4fQAX9PN+EOog/wFlSAs8mLaHo=">AAACGHicbVDLSsNAFJ3UV62vqEs3g0VwVRKrrRuh6MZlBfuANi2TyaQdOpOEmUmhhPyIuNXvcCdu3fkZ/oGTNgtrPTDM4Zxz4d7jRoxKZVlfRmFtfWNzq7hd2tnd2z8wD4/aMowFJi0cslB0XSQJowFpKaoY6UaCIO4y0nEnd5nfmRIhaRg8qllEHI5GAfUpRkpLQ9OsDpJqzU5vbGuQ2HUrHZplq2LNAVeJnZMyyNEcmt99L8QxJ4HCDEnZs61IOQkSimJG0lI/liRCeIJGpKdpgDiRTjLfPIVnWvGgHwr9AgXn6u+JxHW5Trkh86Cccf3LJRtxmck6wpEar3iZ+J/Xi5V/7SQ0iGJFArzYw48ZVCHMWoIeFQQrNtMEYUH1KRCPkUBY6S5LuiP7byOrpH1RsWuVq4fLcuM2b6sITsApOAc2qIMGuAdN0AIYTMEzeAGvxpPxZrwbH4towchnjsESjM8fSgSedQ==</latexit>

3361 = 10170
<latexit sha1_base64="e/Xukd9CW1eKWdje+mOfnwzbVmE=">AAACFHicbVDLSgMxFM3UV62vqks3wSK4KhMf1S6EohuXFewD2rFkMmkbmmSGJCOUob8hbvU73Ilb936Gf2CmnYW1Hgg5nHMuuTl+xJk2rvvl5JaWV1bX8uuFjc2t7Z3i7l5Th7EitEFCHqq2jzXlTNKGYYbTdqQoFj6nLX90k/qtR6o0C+W9GUfUE3ggWZ8RbKz0gKpdwwTVqHp1WkG9Ysktu1PARYIyUgIZ6r3idzcISSyoNIRjrTvIjYyXYGUY4XRS6MaaRpiM8IB2LJXYPuUl060n8MgqAeyHyh5p4FT9PZH4vrApP+QB1GNhbz1nY6FT2UYENsMFLxX/8zqx6V96CZNRbKgksz36MYcmhGlDMGCKEsPHlmCimP0KJEOsMDG2x4LtCP1tZJE0T8qoUj6/OyvVrrO28uAAHIJjgMAFqIFbUAcNQIACz+AFvDpPzpvz7nzMojknm9kHc3A+fwCja52q</latexit>

19⇥ 19 = 361



Intro to Reinforcement Learning



Reinforcement Learning - Intro
‣ RL is a way to deal with combinatorially large search 

spaces 
‣ Instead of trying all combinations by brute force 

(which would require visiting all states), you train a 
policy NN that learns some policy according to which 
it decides for you which state to visit next 

‣ To do so, RL solves a Markov Decision Problem, 
meaning once a certain state is reached, the next 
action is independent of how it was reached

…



‣ Task: Find sequence of actions that optimize a process

Input 
state

Find next 
action

Perform 
next action

Receive reward/
punishment

Adjust 
behavior

Terminal 
state

Reinforcement Learning
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Reinforcement Learning - Vocab
‣ Environment: Set of states and actions on these states 
‣ States: Set of possible “configurations”,   

Can be discrete (finite or infinite), or continuous 
‣ Actions: Set of actions that transition between states. Can be discrete 

(finite or infinite), or continuous.  
In my experience, RL shines for huge state spaces but modestly large 
action spaces 

‣ Terminal states: Subset of states for which no action is possible (the 
search has ended) 

‣ Episode: A sequence of states and actions that ends in a terminal state
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Reinforcement Learning - Vocab
‣ Policy: Describes how the agent selects an action given its current state 

• Deterministic policy: a is determined uniquely from s 

• Non-deterministic policy: multiple s are possible for the same a 

‣ Reward: The feedback given to the agent for following policy     . 
Usually the reward  

‣ Return: accumulated reward from current position onward: 
                is the so-called discount factor.  
Note that G depends on
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Intro to Knot Theory

LMOV invariants as counting open M2-branes ending on M5-branes. However, integrality of

these invariants has been verified only in some specific cases e.g. in [2–4, 7, 8], as well as for

some infinite families of knots and representations [9,10]. In particular, in [10] the relation of

the framed unknot invariants (equivalently extremal invariants of twist knots, as well as open

topological string amplitudes for branes in C3 geometry) to motivic Donaldson-Thomas in-

variants of the m-loop quiver was found, which led to the proof of integrality of BPS numbers

in those cases; this relation was then analyzed and discussed also in [11, 12].

Reducing the above mentioned open M2-brane states to their worldvolume is expected

to lead to a description in terms of N = 4 supersymmetric quiver quantum mechanics.

We find this quantum mechanics description by postulating that the Ooguri-Vafa generating

function should be identified with the motivic generating series assigned to a putative quiver.

Factorization of such a series defines motivic Donaldson-Thomas invariants, which also have

an interpretation as the counts of BPS states [13,14]. If a quiver in question indeed exists, it

is natural to identify these BPS states as the e↵ective description of M2-M5 bound states in

the Ooguri-Vafa description. As our main result – announced already in [1] – we show that

the Ooguri-Vafa generating series indeed takes the form of the motivic generating series for

some quiver, and we identify such quivers explicitly in various cases. For example, the quiver

corresponding to the trefoil knot is shown in figure 1.

BPS states that arise in the quiver description can be interpreted as elements of Coho-

mological Hall Algebras [14–16], which provide prototype examples of algebras of BPS states,

whose existence was postulated in [17]. These structures are intimately related to the theory

of wall-crossing and associated phenomena, which led to important results both in physics

and mathematics in recent years. In our work we take advantage of some of those results,

as well as suggest new directions of studies. For example, it has been proved that motivic

Donaldson-Thomas invariants assigned to a symmetric quiver are integer [18]. Our results

lead to the identification of LMOV invariants with motivic Donaldson-Thomas invariants

for symmetric quivers, which thus proves integrality of these LMOV invariants. More pre-

cisely, for knots for which we identify the corresponding quiver, the LMOV conjecture for

all symmetric representations is automatically proved. This is already an important result,

Figure 1. Trefoil knot and the corresponding quiver.
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Knots Quivers

Homological degrees, framing Number of loops

Colored HOMFLY-PT Motivic generating series

LMOV invariants Motivic DT-invariants

Classical LMOV invariants Numerical DT-invariants

Algebra of BPS states Cohom. Hall Algebra

Table 1. Identification of various quantities associated to knots and quivers.

and we expect that such corresponding quivers exist for all knots, and a general proof of the

LMOV conjecture could be conducted along these lines. Some other identifications between

quantities associated to knots and to quivers are shown in table 1.

There are many other consequences and new relations that follow from our work. First,

motivic Donaldson-Thomas invariants that we consider have an interpretation as certain

topological characteristics of quiver moduli spaces [19, 20]. This suggests that quiver moduli

spaces themselves should be interpreted as knot invariants, which leads to a novel kind of

categorification in knot theory.

Second, we find that all HOMFLY-PT polynomials, as well as superpolynomials and

their quadruply-graded generalizations, colored by arbitrary symmetric representations, are

determined by a finite number of parameters: the matrix C encoding the structure of the

quiver corresponding to a given knot, and homological degrees of generators of the uncolored

HOMFLY-PT homology. There should be a deeper reason why such limited information gives

rise to rich structure and intricate properties of various infinite families of knot invariants.

Third, colored HOMFLY-PT polynomials and LMOV invariants can be defined for ar-

bitrary (not only symmetric) representations and labeled by arbitrary Young diagrams. It

is desirable to understand how this information is encoded in the corresponding quiver, or

some generalization thereof. On the other hand, colored HOMFLY-PT polynomials labelled

by symmetric representations satisfy a di↵erence equation (encoded in bA operator), and their

asymptotics is encoded in algebraic curves generalizing the A-polynomial [9, 10, 21]. Such

objects should also have an interesting interpretation in the context of quivers. In fact, for

the m-loop quiver analogous functional equations have been discussed in [15], and we expect

that such relations should more generally play a role in quiver representation theory.

Fourth, having expressed colored HOMFLY-PT polynomials in the form of the motivic

generating function, it is natural to replace one generating parameter associated with sym-

metric representations, by several parameters that naturally appear in motivic generating

functions. This leads to a refinement of colored HOMFLY-PT polynomials, as well as LMOV

invariants, and among others even stronger integrality statements.

Furthermore, motivic generating functions associated to quivers, as well as – after our

rewriting – the generating functions of colored HOMFLY-PT polynomials, take the form of

Nahm sums (with additional generating parameters) [22, 23]. The Nahm sums have very
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Motivation
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Fig. 7a -c .  A link C on a  genera l three  manifold M is  ske tched in a . A small sphere  S  ha s  been 
drawn a bout a n inconvenient cross ing; it cuts  M into a  s imple  piece  (the  inte rior of S ) a nd a  
complica ted piece . In b, the  picture  is  rea rranged to exhibit the  cutting of M more  explicitly; the  
two pieces  now a ppe a r on the  le ft a nd right as  ML (the  complica ted piece  whose  de ta ils  a re  not 
drawn) a nd MR (the  inte rior of S). The  ke y to the  ske in re la tion is  to cons ider replacing M R with 
some subs titutes , as  shown in c 
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b o u n d a rie s  o f ML a n d  MR a re  two  d im e n s io n a l.  

Th e  s tra te g y is  n o w th e  s a m e  a s  the  s tra te g y wh ic h  le d  to  th e  m u ltip lic a tivity 
re la tio n  (4.1). Th e  F e yn m a n  p a th  in te g ra l o n  ML d e te rm in e s  a  ve c to r X in  YgL" Th e  
F e yn m a n  p a th  in te g ra l o n  MR d e te rm in e s  a  ve c to r ~, in  ~'~R. Th e  ve c to r s pa ce s  ~ z  
a n d  ;/gR (wh ic h  a re  a s s o c ia te d  with  th e  s a m e  R ie m a n n  s u rfa c e  S  2 with  o p p o s ite  
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Z(L) = (Z, ~ ) .  (4.8) 
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th is  p a irin g  is  o c c u rrin g  in  a  two  d im e n s io n a l ve c to r s pa ce .  A two  d im e n s io n a l 
ve c to r s p a c e  h a s  the  m a rve lo u s  p ro p e rty th a t  a n y th re e  ve c to rs  o b e y a  re la tio n  o f 

[Poincare 1904]

Is every 4D manifold that 
is homotopy equivalent to 
a 4-sphere diffeomorphic 
to the standard 4-sphere?

[Witten `89]

1.1. Molecular simulation methods for protein folding

It is widely accepted that computer simulations have been playing a
fundamental role in protein folding research. Since the 1990s, the use
of Monte Carlo simulations of lattice models has been helping establish-
ing the fundamental principles driving this remarkable biological process
[28–33]. More recently, these models have been used to study aggrega-
tion and other biologically relevant phenomena involving proteins
[34–38]. In a simple lattice model the protein is reduced to its backbone
structure: amino acids are represented by beads that occupy the vertices
of a (twoor three dimensional) regular lattice and the peptide bond is re-
duced to sticks of uniform size (corresponding to the lattice spacing).

Interactions between the amino acids can be modelled by the HP poten-
tial [39], that captures the hydrophobic effect by considering hydropho-
bic and hydrophilic amino acids only, by the sequence-based potential,
which takes into account the heterogeneity of interactions resulting
from the 20 amino acid alphabet by using the Miyazawa–Jernigan inter-
action matrix [40], or by the native-centric (or structure-based) Go po-
tential, in which the interaction matrix is exclusively dictated by the
native structure of the model protein, i.e., only native interactions con-
tribute to protein energetics [41]. Lattice models are crude representa-
tions of real proteins that feature the fundamental ingredients of their
polymeric nature. They are adequate to explore fundamental aspects of
the folding process that do not depend on specific details of proteins,
and computational efficiency allows evaluating folding thermodynamics
and kinetics (including rates) with high accuracy.

To address the folding process of specific proteins researchers devel-
oped another class of models, which use an off-lattice representation of
the protein (that can be either full-atomistic or restricted to Cα atoms)
[42–49]. The folding space of off-lattice models is often explored with
Monte Carlo (MC) methods or Molecular Dynamics (MD) schemes
(discrete MD, Langevin etc). Off-lattice models are devoid of the severe
restrictions imposedby the lattice, a disadvantage that, in particular, im-
pairs a correct capturing of the conformational entropy [50]. In general,
these off-lattice representations are combined with Go or Go-like inter-
action potentials. However, other structure-based models, based on
more sophisticated intermolecular potentials, have been developed
that incorporate important aspects of protein energetics (e.g. hydrogen
bonding [51] and electrostatic interactions [23,52], just to mention a
few examples) broadening the spectrum of the questions that can be
tackled in the framework of simulations. A very interesting study by
Holzgräfe and Wallin, combining a Cα representation with an interac-
tion potential based on a three-letter amino acid alphabet, was recently
developed to study the intriguing phenomena of protein fold switching
[53].

Fig. 2. Cartoon representation of the native structure (top), reduced backbone representation obtained with the Taylor smoothing algorithm highlighting a open knot (middle) and cor-
responding topological knot (bottom) of proteins YibK (PDB ID: 1j85) (a), acetohydroxy acid isomeroreductase (PDB ID: 1yve) (b), and UCH-L3 (PDB ID: 1xd3) (c). The trefoil (or 31),
figure-eight (or 41) and penta (or 52) knots exhibit three, four and five crossings on a planar projection. The subscript 1 in 31 (41) stands for first knot with three (four) crossings and sub-
script 2 in 52 stands for second knot with five crossings, according to standard knot tables The coordinates of the reduced representations were retrieved from http://knots.mit.edu/ and
visualized with PyMol (The PyMOL Molecular Graphics System, Open-Source 1.5.x). The topological representations were produced with knotplot (http://www.knotplot.com/).

Fig. 3. A slipknot (a) is a conformation in which one of the protein termini adopts a hair-
pin-like conformation (highlighted in red) that threads a loop formed by the remainder of
the chain. A knottingmechanism based on slipknots has been proposed for some proteins.
In alternative, the knotting stepmay occur via the threading of one of the termini through
the knotting loop.
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Knots - Definition

Definition (Knot):
 
A knot is an embedding 
of a circle into the 
three-sphere.
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‣ In principle it should not matter: There exist algorithms to transform one 
representation to another; in practice, there are different aspects to this: 

‣ CS 
• Which representations are most efficient, and does the ML algorithm make use of 

efficiency in encoding? 

• Can the problem be recast in a form that resembles problems that have been 
attacked by the CS community 

‣ Math 
• Does a representation have a beneficial property that others do not?

Which representation to choose?



Example 1: Efficiency of encoding
[-1, -2, 3, 4, -5, 6, 7, -8, -9, -8, 7, -6, 5, -4, -3, -5, 2, 4, 6, 1, 3, -7, 2, 6, 8, 7, 9, -6, 10, -5, 11, 4, 6, 12, 3, -7, 13, -6, 8, 14, -7, 9, 15, -6, 8, 10, 16, 9, 
11, -8, 10, 12, 7, 11, 13, 6, 8, 12, 14, -5, 13, 15, -4, 14, -5, -5, 5, 6, 7, 8, 9, 8, -10, -7, -11, 6, -10, 12, 5, -11, 4, 6, -3, 7, -2, 8, 9, -10, -9, 8, -7, 9, 6, -9, 5, 
7, -4, -7, -3, 5, 8, -4, 9, 5, 6, -7, 8, -9, 10, -9, 11, -8, 10, -12, 9, -13, 8, -12, -11, -10, 9, -8, 7, -6, -7, 8, 7, -7, 7, 8, -7, 9, 7, -9, -8, 9, 10, -9, 11, 8, -10, 
12, -7, 10, 13, -8, 11, -14, -7, 9, -13, -15, 10, -12, -14, -16, 9, -13, -15, 8, -14, 7, 9, 8, -7, -9, 7, -8, -9, 10, 9, -11, -10, -12, -9, -11, -13, -8, -10, -12, 7, -11, 
-8, -9, -10]

[[0, 70, 1, 69], [1, 116, 2, 115], [164, 2, 165, 3], [3, 92, 4, 
91], [4, 22, 5, 21], [173, 6, 78, 5], [29, 7, 30, 6], [7, 97, 8, 
98], [8, 138, 9, 139], [9, 59, 10, 58], [10, 59, 11, 60], [11, 
104, 12, 103], [12, 104, 13, 105], [13, 106, 14, 105], [14, 62, 
15, 61], [15, 54, 16, 55], [16, 38, 17, 37], [17, 142, 18, 141], 
[18, 153, 19, 152], [19, 149, 20, 150], [78, 20, 79, 21], [22, 92, 
23, 93], [23, 133, 24, 134], [168, 25, 169, 24], [169, 25, 170, 
26], [26, 95, 27, 94], [27, 136, 28, 135], [172, 29, 173, 28], 
[30, 151, 31, 150], [31, 151, 32, 152], [32, 140, 33, 141], [33, 
57, 34, 56], [34, 100, 35, 101], [35, 102, 36, 101], [55, 37, 56, 
36], [142, 38, 143, 39], [153, 39, 154, 40], [148, 41, 149, 40], 
[111, 42, 112, 41], [160, 43, 161, 42], [66, 44, 67, 43], [86, 45, 
87, 44], [45, 84, 46, 83], [46, 84, 47, 85], [85, 47, 86, 48], 
[48, 66, 49, 65], [159, 49, 160, 50], [50, 111, 51, 110], [147, 
51, 148, 52], [52, 154, 53, 155], [143, 54, 144, 53], [57, 99, 58, 
100], [60, 103, 61, 102], [62, 106, 63, 107], [157, 63, 158, 64], 
[158, 65, 159, 64], [87, 68, 88, 67], [68, 83, 69, 82], [116, 70, 
117, 71], [125, 71, 126, 72], [130, 73, 131, 72], [121, 74, 122, 
73], [120, 74, 121, 75], [119, 76, 120, 75], [128, 76, 129, 77], 
[127, 0, 128, 77], [90, 80, 91, 79], [113, 81, 114, 80], [162, 82, 
163, 81], [161, 88, 162, 89], [89, 113, 90, 112], [93, 134, 94, 
135], [170, 96, 171, 95], [137, 96, 138, 97], [139, 99, 140, 98], 
[107, 157, 108, 156], [145, 108, 146, 109], [146, 110, 147, 109], 
[163, 115, 164, 114], [126, 117, 127, 118], [129, 119, 130, 118], 
[122, 168, 123, 167], [132, 123, 133, 124], [165, 125, 166, 124], 
[166, 131, 167, 132], [171, 137, 172, 136], [144, 156, 145, 155]]

[[0.63, 0.0, 0.73], [0.46, 1.0, 0.17], [0.0, 0.59, 0.17], [1.0, 0.78, 0.63], [0.23, 0.78, 
0.0], [0.33, 0.69, 1.0], [0.56, 0.0, 0.59], [0.22, 1.0, 0.56], [0.0, 0.17, 0.61], [1.0, 
0.37, 0.86], [0.47, 0.71, 0.0], [0.52, 0.33, 1.0], [0.42, 0.0, 0.13], [0.66, 1.0, 0.85], 
[0.0, 0.61, 0.71], [1.0, 0.13, 0.75], [0.89, 0.39, 0.0], [0.62, 0.57, 1.0], [0.88, 0.0, 
0.18], [0.46, 1.0, 0.84], [0.25, 0.34, 0.0], [0.49, 0.79, 1.0], [0.0, 0.24, 0.48], [1.0, 
0.45, 0.14], [0.74, 1.0, 0.14]]

[work in progress]

• The number of crossings in a knot 
projection is larger than the number of 
points needed to specify the knot in 
3D 

• This means that some quantities can 
be computed faster in 3D than in 2D…

[Bar-Natan, Bar-Natan, Halacheva, Scherich `21]



‣ Different representations encode topological info in different ways (e.g. 
braid words can be read left to right, DT codes are harder to “picture”) 
• Braid words might lend themselves to ML techniques developed for Natural 

Language Processing 

• Grid Diagrams to ML techniques developed for Computer Vision or Graph 
Networks 

‣ Example: Unknot recognition problem 
 

• Perhaps the sequential representation is “less confusing” for the neural network 
even though the description is less efficient

Example 2: Transformation to other problems

Empirical observation: Braid words work better than Gauss or DT

[Gukov, Halverson, FR, Sulkowski `20]



‣ There are hard unknots that require adding braid generators (crossings) before 
being able to simplify 

• Is this property preserved under maps such as Vogel’s algorithm? 

• On specific knots, is one representation simpler than another? Does the algorithm 
benefit from seeing both representations? 

‣ This property is absent in Grid Diagrams with Dynnikov moves 

‣ Kauffman et.al. used this to design an ML algorithm that monotonically decreases 
crossings

Example 3: Mathematical properties of representation

[Kauffman, Lambropoulou `06; Tuzun, Sikora `16; Burton, Chang, Löffler, Mesmay, Maria, Schleimer, Sedgwick, Spreer `21]

[Dynnikov `06]

[Kauffman, Russkikh, Taimanov `20]

Can my algorithm deal with the fact that it needs to make knots more complicated 
to ultimately simplify them further?



‣ Knot is 
‣ Representation of data 

informs algorithm and NN 
architecture: 
• RL vs monotonic optimizer 
• CNN vs Transformer vs …

Recap
1 Hard problems

2 Reinforcement Learning

3 Intro to Knot Theory

‣ Hierarchy of hardness 
‣ Combinatorially hard 

problems in NP good for RL

‣ Solve MDP 
‣ Approximate policy, SVF, 

AVF by NN

<latexit sha1_base64="MvjZ7MyKv9qA2rueepDX1vTxUng=">AAACHnicbVDJTsMwFHTKVsoWQOLCxaJC4lQl7McKLhyLShepTSvHcRqrThzZDqgK/RfEFb6DG+IKn8Ef4LQ5UMpIlkcz86T3xo0ZlcqyvozCwuLS8kpxtbS2vrG5ZW7vNCVPBCYNzBkXbRdJwmhEGooqRtqxICh0GWm5w+vMb90TISmP7tQoJk6IBhH1KUZKS31zr96zuwHnQ0EHgUJC8AdY7530zbJVsSaA88TOSRnkqPXN767HcRKSSGGGpOzYVqycFAlFMSPjUjeRJEZ4iAako2mEQiKddLL/GB5qxYM+F/pFCk7U3xOp64Y65XLmQTkK9S9nbBTKTNaREKlgzsvE/7xOovxLJ6VRnCgS4ekefsKg4jDrCnpUEKzYSBOEBdWnQBwggbDSjZZ0R/bfRuZJ87hin1fObk/L1au8rSLYBwfgCNjgAlTBDaiBBsDgETyDF/BqPBlvxrvxMY0WjHxmF8zA+PwBLxSiPg==</latexit>

S1 ,! S3


