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Brief	summary	of	Lara’s	&	James’	Lectures

• Calabi-Yau	manifolds:	compact,	complex,	Kähler
• Admit unique Ricci-flat	metric
[for	fixed Kähler and	complex structures]
• Large databases of example manifolds
• The	Ricci-flat	metric,	𝑔"# is	something we want to	compute
• This requires solving a	PDE	on	a	compact,	curved space
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Aim	of	these	lectures

• Show	how	ML	can	be	used	in	learning	CY	metrics
• Partial	overview	of	past	work…
• … with emphasis on	open-source	packages

• Goals
Know which packages exist and	what they are designed to	do
Develop familiarity with (some)	methods and	packages
…
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Outline:	ML	of	CY	metrics

Lecture	1:	overview	
• Intro	ML	implementations
Available	packages
• Point	sample	recap:
measures	and	patches		
• Training and	loss	functions	
• Accuracy	and	error	measures
• Different	models/neural	nets

Lecture	2:	details
• Direct	learning	of	CY	metrics	
(details	and	demo)	
• Advanced	methods
Goals	and	realizations

Tutorial
• Implementations	&	experiments

Main	references
Anderson	et	al	2012.04656,	Douglas	et	al 2012.04797,	Larfors et	al	2205.13408,	Gerdes et	al	2211.12520
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Numerical	approximations	of	CY	metrics

Traditional	methods:	 cf James’	&	Lara’s	lectures
• Donaldson’s	algorithm	(iterative	fixed	point	scheme)
• Headrick-Nassar functional	minimization
à Kähler potential	using	spectral	basis	

Machine	learning	methods:	
• ML-assisted traditional methodsà Kähler potential	
• Direct ML	à Kähler potential	or	CY	metric
Accuracy	checks	same	for	all	methods

CY	metrics	from	NNs	- Lecture	1 4



Benefits	of	ML	approach

• Significant	improvement	of	speed,	performance,	and	scope
More	accurate	approximation	for	given	compute
Better	scaling	
More	advanced	CYs	(eg CICY;	toric ambient	spaces)
Learn	moduli	dependence	(realized	for	1-2	cpl str moduli	on	quintic CY)

• Generalize	to	SU(3)	structures	(realized	for	Strominger-Hull	ansatz	on	quintic CY)
• PyTorch,	TensorFlow,	JAX:	ML	libraries	for	auto-differentiation	
à efficiently	compute	derivatives	and	optimize	loss	functions

• Drawback:	in	contrast	to	Donaldson,	lack	𝑘 → ∞ proof
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Setting	up	the	problem:
cymetric: Neural networks

Problem: find Ricci flat CY metric gCY () find JCY that solves the MA eq.

JCY ^ JCY ^ JCY =  ⌦ ^ ⌦̄ =  d VolCY

where  is some complex constant.

Recall:

Know ⌦ and JFS s.t. [JCY ] ⇠ [JFS].
Have sample of points on CY randomly distributed w.r.t to known measure dA .

Plan:

Point sample  NN; train and test using physics knowledge  metric prediction.

Magdalena Larfors Learning CY metrics 4 May 2022 10 / 32

While	𝐽"# is	unknown we	know	Ω and	𝐽)*
• Find	𝐽"# = 𝐽)* + 𝜕�̅�𝜙	 that	solves	MA	eq.
• We	will	train	a	neural	network	to	predict	𝑔"#~	𝐽"#

CY	metrics	from	NNs	- Lecture	1 6



Setting	up	the	problem:
cymetric: Neural networks

Problem: find Ricci flat CY metric gCY () find JCY that solves the MA eq.

JCY ^ JCY ^ JCY =  ⌦ ^ ⌦̄ =  d VolCY

where  is some complex constant.

Recall:

Know ⌦ and JFS s.t. [JCY ] ⇠ [JFS].
Have sample of points on CY randomly distributed w.r.t to known measure dA .

Plan:

Point sample  NN; train and test using physics knowledge  metric prediction.

Magdalena Larfors Learning CY metrics 4 May 2022 10 / 32

Let’s	solve	this	on	a	quintic CY,	𝑋 ⊂ ℙ5 ,	defined	as	zero	set	𝑝 = 0
In	affine	coordinates	 𝑧9 ,	can	compute	
• Ω = :;<∧:;>∧:;?

@ABC
|CEF 𝐽)* =

G
HI
𝜕�̅� ∑ ln(𝑧G𝑧GN)|CEF5

P

• Find	(global)	𝐽"# = 𝐽)* + 𝜕�̅�𝜙	 that	solves	MA	eq.
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Machine	Learning	implementation	template

Point	
sample

ML	model
(neural	net)

Metric	
prediction

Loss	functions Error	measures

Training	algorithm	
(Backpropagation)

Moduli
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Machine	Learning	implementation	template

• A	CY	metric	package	provides	implementation	of	template
• While	structure	is	similar,	architecture	choices	abound	
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CY	metric	ML	packages	on	Github

• Holomorphic	and	bihomogeneous networks Douglas	&	Qi
ML	using	spectral	ansatz,	CY	hypersurface	in	ℙQ
python/TensorFlow https://github.com/yidiq7/MLGeometry	

• cymetric Ruehle &	Schneider
direct	ML	methods,	works	on	CICYs	and	Kreuzer-Skarke CY
python/TensorFlow &	Mathematica				

https://github.com/pythoncymetric/cymetric	

• Cyjax Gerdes &	Krippendorf
ML	Donaldson’s	algebraic	ansatz	of	Kähler potential,	CY	hypersurface	in	ℙQ
python/JAX	 https://github.com/ml4physics/cyjax

Open	source	packages,	can	be	freely	used	for	projects	(&	contributions	welcome)	
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Point	sample
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Weights	and	weights

• In	the	following	slides	we	will	reuse	the	term	“weights”	for	discrete	
integration	measures
• We	also	use	the	term	“weights”	for	some	parameters	of	neural	
networks
• Hopefully	this	will	not	cause	too	much	confusion…
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Generating	a	random	point	sample

Goal:	Random	set	of	points	on	CY,	sampled	w.r.t.	known	measure	𝑑𝐴
Why?
• We	need	to	compute	integrals	(e.g to	check	accuracy)

• Numerically,	evaluate	integral	as	weighted	sum

where		
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where the dependence on the patch r has been made explicit. For the case where the ambient space
is simply a projective space, this reduces to the standard (a�ne version of the) Fubini-Study Kähler
potential, KFS = 1 +

P
µ
|zµ|
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2.6 Numeric integration

Numeric integration can be performed using Monte-Carlo methods (for a method developed recently
based on rejection sampling from tropical densities see [48]). The basic goal is to be able to numerically
evaluate integrals of the form
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for a function f on a CY manifold X (of CICY or KS type). To do this, we require a sample of points
pi 2 X, where i = 1, . . . , N , which are distributed according to a known measure, denoted by dA, which
we discuss in detail below. In terms of the so-called weights (or masses), customarily defined as
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where (2.13) has been used. On the other hand, since the Ricci-flat CY metric is calculated numeri-
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In the following we refer to the quantities w̃i as the auxiliary weights. The approximation (2.26) has a
certain advantage in that it does not contain any unknown coe�cient, such as  in Eq. (2.25), which
needs to be fixed by a reference calculation.

2.7 Sampling points on toric varieties

We now discuss a method for generating the sample points pi with a known distribution dA on the
CY X. In principle, this could be done by a Markov chain Monte-Carlo method using, for example,
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the slope can also be computed from

µt(OX(k)) =
2
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The numerical version of this equation will be used to compute line bundle slopes during training and
compute the slope loss, in order to enforce the correct Kähler class.

2.3 Constructing the holomorphic top form

For our purposes we need to construct the holomorphic top form ⌦ explicitly and we follow a method
described, for example, in Ref. [47]. For a KS manifold, defined as a hypersurface in a toric four-fold
A there are always four a�ne ambient space coordinates z

µ, where µ = 1, . . . , 4, on a given patch,
explicitly given in Eq. (A.5). Then we can write the holomorphic (3, 0) form as

⌦ =
dz1 ^ dz2 ^ dz3

@p/@z4
, (2.11)

where the coordinate z4 in the denominator should be replaced by a solution z4 = z4(za), where
a = 1, 2, 3, of the defining equation p(zµ) = 0. More details on the underlying toric geometry can be
found in Appendix A.

For the case of CICYs, defined in an ambient space A = Pn1 ⇥ · · · ⇥ Pnh with total dimension d =P
h

↵=1 n↵, we have a�ne coordinates zµ, where µ = 1, . . . , d on each patch. From these we can choose
three coordinates, za, where a = 1, 2, 3, to parameterize the CY patch while the remaining K = d � 3
coordinates z

q can be written as functions z
q = z

q(za) by using the K defining polynomials pr of the
CICY. The holomorphic (3, 0)-form can then be written in terms of the determinant of the K ⇥ K

matrix @pr/@z
q, and is explicitly given by

⌦ =
dz1 ^ dz2 ^ dz3

det(@pr/@zq)
, (2.12)

where the coordinates zq in the denominator have to be replaced by the solutions zq = z
q(za).

Given ⌦, it is useful to introduce the associated volume form

dVol⌦ = ⌦ ^ ⌦̄ ) dVolCY =


3!
dVol⌦ (2.13)

which, by virtue of the Monge-Ampère equation (2.2) and Eq. (2.4), is proportional to the CY volume
form. This means, while the Ricci-flat CY metric is not known in analytic form, its associated volume
form can be constructed explicitly (up to a constant) from the expression for ⌦.

2.4 Transition functions

The a�ne coordinates on each patch of the (toric) ambient space patch can be written as functions of
the homogeneous coordinates xi (see Appendix A.2). More explicitly, for two ambient space patches U

7
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Generating	a	random	point	sample	

Let	𝑋: 𝑝 = 0	 ⊂ ℙ5 be	the	quintic CY
• Pick	random	point	on	ℙ5,	reject	all	points	off	𝑋.
• Pick	some	ambient	coordinates,	solve	for	the	rest	using	𝑝 = 0
• Markov	Chain	Monte	Carlo	method
• Algorithm	using	theorem	by	Shiffman-Zelditch

Douglas	et.	al:	06

CY	metrics	from	NNs	- Lecture	1 14



Generating	a	random	point	sample	

Algorithm	applied	to	quintic 		𝑋: 𝑝 = 0	 ⊂ ℙ5	 Douglas	et.	al:	06

• Sample	uniformly	distributed	points	on	𝑆V,	then	mod	out	phase
⤳ random	points	on	ℙ5,	distributed	w.r.t.	FS	measure	on	ℙ5

• 2	such	points	𝑞P,H ⤳ line	in	ℙ5,	intersects	𝑋 in	5	points
Solve	𝑝(𝑞P + 𝑡𝑞H)		=	0	à 5	solutions	𝑡∗

• Repeating	this	process	𝑀 times	⤳ 5𝑀 random	points	on	𝑋
• Shiffman-Zelditch:	these	points	are	distributed	w.r.t.	FS	measure	on	𝑋

Generalizations	beyond	quinticà tomorrow.
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Coordinates,	patches	and	weights

Algorithm	gives	point	sample	 𝑝] on	quintic 𝑋: 𝑝 = 0	 ⊂ ℙ5	
• Homogeneous	coordinates	 𝑝] =	 𝑥F, 𝑥P, 𝑥H, 𝑥_, 𝑥5 ;	𝑥G~𝛼𝑥G
• Select	patch:	pick	any*	non-zero	𝑥G.	Say	this	is	𝑥F
à affine	coordinates	 𝑝] =	 𝑧P, 𝑧H, 𝑧_, 𝑧5 =

a<
ab
, a>
ab
, a?
ab
, aB
ab	

3	lin.	indep.	coordinates,	since	𝑝(𝑥F, 𝑥P, 𝑥H, 𝑥_, 𝑥5) = 0
• Compute	Ω	, 𝐽)* at	point	à weights	𝑤G for	numerical	integrals	

*Be	clever:	e.g.	pick	xe	of	largest	norm	à numerical	stability
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ML	models:	Set-up	&	train
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Neural	nets	for	CY	metrics:	generalities

• Input	and	output	layers
• Hidden	layers;	
trainable	parameters	𝜃g = (𝑊g, 𝑏g)
• Fully	connected,	feed-forward
• (Semi)supervised	learning:	
Minimize	(custom)	loss	functions
• After	training:	
NN	à approximate	CY	metric	

weight biasAct.	fcn
CY	metrics	from	NNs	- Lecture	1 18
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Neural	nets:	generalities

Architectural	choices
• What	to	predict
metric,	Kähler pot,	H-matrix?
• Encode	constraints	in	NN	or	loss?
(global,	complex,	Kähler…)

Then	train	
• Minimize	loss	functions
And	check	performance
• Error	measures
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Training	and	Loss	functions
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Gradient Descent - Details
‣ NN = composition of maps     use chain rule for derivatives 

‣ At each layer of the NN, we want the gradient for each point in the dataset 

‣ We introduce the following notation: 

‣ Then: 

✦   

✦   
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Training	and	Loss	functions
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• Recall:
PyTorch,	TensorFlow,	JAX:	ML	libraries	for	auto-differentiation	
à efficiently	compute	derivatives	and	optimize	loss	functions
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Training	the	network

Training	by	gradient	descent
• Compute	loss	gradients	at	points
• Move	towards	smaller	loss
• Repeat	for	many	points

• NN	with	layers

• Input	à prediction	à loss		
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Training	the	network
Loss	function	depends	on	weights
• Backpropagation
Layer	by	layer	from	end	to	start
Loss	gradients	by	chain	rule
Update	weights	to	minimize	loss
• Stochastic	gradient	descent
Mini-batches	and	epochs
avoid	getting	stuck	in	local	min
• ML	libraries	(TensorFlow etc)	have	
built	in	algorithms	for	this
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Gradient Descent - Details
‣ NN = composition of maps     use chain rule for derivatives 

‣ At each layer of the NN, we want the gradient for each point in the dataset 

‣ We introduce the following notation: 

‣ Then: 

✦   

✦   

✦ 

<latexit sha1_base64="ZomLK/kRj7EVT2o6UJfmH+GZ/xY=">AAACEXicbVDLSgMxFM3UV62vqks3wSK4KjPia1l047KKfcB0KJlMpg3NY0gyShn6FeJWv8OduPUL/Az/wEw7C2s9EHI451y494QJo9q47pdTWlpeWV0rr1c2Nre2d6q7e20tU4VJC0smVTdEmjAqSMtQw0g3UQTxkJFOOLrO/c4DUZpKcW/GCQk4GggaU4yMlfzeHR0MDVJKPvarNbfuTgEXiVeQGijQ7Fe/e5HEKSfCYIa09j03MUGGlKGYkUmll2qSIDxCA+JbKhAnOsimK0/gkVUiGEtlnzBwqv6eyMKQ21QoWQT1mNtfz9mI61y2EY7McMHLxf88PzXxZZBRkaSGCDzbI04ZNBLm9cCIKoING1uCsKL2FIiHSCFsbIkV25H3t5FF0j6pe+f1s9vTWuOqaKsMDsAhOAYeuAANcAOaoAUwkOAZvIBX58l5c96dj1m05BQz+2AOzucPwsmd6A==</latexit>)

<latexit sha1_base64="FX7kGtgTEQyFtq95xHaQIb7AYOc="></latexit>

@L

@✓(n)
=

@L

@z(n)
@z(n)

@✓(n)

<latexit sha1_base64="7ap01WH7JQSyOLxZPyR4yKP0PQ0="></latexit>

@L

@✓(n�1)
=

@L

@z(n)
@z(n)

@z(n�1)

@z(n�1)

@✓(n�1)

<latexit sha1_base64="fiI6vVitugvC6211J3GTrdaLAP8="></latexit>

@L

@✓(n�2)
=

@L

@z(n)
@z(n)

@z(n�1)

@z(n�1)

@z(n�2)

@z(n�2)

@✓(n�2)

GD parameter update
<latexit sha1_base64="GFp9kpIWOp6dQiqTAkfOvMg+J9c="></latexit>

✓(i) ! ✓(i) � ↵
@L

@✓(i)



So	what	loss	functions	should	we	use?
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Loss	functions	encode	math	constraints

• We	train	the	network	to	get	Ricci-flat	metric	(in	given	Kähler class)
• We	don’t	know	metric	--- supervised	learning	not	good*
• Resolution:	semi-supervised	learning
1.	Encode	mathematical	constraints	as	(scalar)	loss	functions
2.	Train	network	(adapt	layer	weights)	to	minimize	loss	functions
• E.g.	satisfy	Monge-Ampere	eq⤳	minimize	Monge-Ampere	loss

Learning CY metrics with cymetric

Custom loss terms controls learning - user chooses ↵i
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Loss	functions	encode	math	constraints
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• Satisfy	Monge-Ampere	eq⤳	minimize	MA	loss

• Set	Ricci	tensor	to	zero	⤳	minimize	Ricci	loss
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More	loss	functions
Also	might	need	to	check
• manifold-ness:	match	metrics	on	patch	overlaps

• Kähler-ity:	check	𝑑	𝐽Cm = 0

• Same	Kähler class	𝐽Cm	~𝐽)* (not	needed	on	quintic)

Architectural	choices	will	determine	which	loss	functions	we	need
àImportance	of	loss	functions	should	be	tunable	(on/off)
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Accuracy	and	performance
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Check	performance

• After	the	network	is	trained,	want	to	check	performance
• Separate	test/validation	sets

cymetric: Neural networks

Input and performance

Input: N points pi , randomly distributed w.r.t to known measure dA on CY.

After training, measure performance:

does the MA equation hold? is the metric Ricci flat?

Check via established benchmarks:

� =
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dA
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i
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Different	ML	implementations
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Neural	nets:	generalities

• Input	and	output	layers
• Hidden	layers;	trainable	weights
• (Semi)supervised	learning	
• Minimize	(custom)	loss	functions
• After	training:	
NN	à approximate	CY	metric	
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ML	implementations

1. Learn	Donaldson’s	H	matrix	
cyjax

2. Learn	Kähler potential
Hol/Bihom network

3. Learn	metric	
cymetric
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Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.
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strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.
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for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
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Instead, we learn the metric directly which we discuss in Section 2.7.
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learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
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The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.
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• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.

10



Pro/con

Learning	H	or	K
Pro
• Kähler
• Globally	defined	
• Donaldson’s	alg:	
convergence	as	𝑘 → ∞

Con
• Scaling	(of	spectral	basis)
• No	generalization	beyond	Kähler

Learning	metric
Pro
• Always	learn	9	comps	of	3*3	
Hermitian	metric
• Generalizes	
(e.g.	non-Kähler SH	metric)

Con
• Not	Kähler
• Not	globally	defined	
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same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.
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hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.
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1.	Learn	Donaldson’s	H	matrix

Donaldson’s	algorithm:	
Iterate	T-operator	until	get	balanced	𝐻
Compute	Kähler potential

• 𝑠p monomials	of	order	𝑘	(sections	of	holomorphic	line	bundle)
• 𝐻:	𝑁g×𝑁g Hermitian	matrix,	“balanced	metric”	
• Larger	𝑘 gives	larger	set	of	𝑠p àmore	accurate	𝐾
• Problem:	Curse	of	dimensionality,	need	to	use	discrete	symmetries

4. Compute the weights wi, i = 1, . . . , Np of the induced distribution of sampled points
on X. (These are not drawn from a flat prior even though the ambient points were.)
In terms of these weights, the numerical integration reduces to
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5. Choose a random initial Hermitian Nk ⇥ Nk matrix H(0)
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The sum over the points and the weights appear from the numerical integration.

7. Set H(`+1) =
⇣
H̃(`)

⌘�1
and return to the previous step. Alternatively, sample new

points and re-calculate the weights and then go to step 6.

8. Repeat until we reach a fixpoint, i.e. H(`+1)
⇡ H(`). In practice around 10-20 steps

are typically enough. We terminate the procedure either after a certain number of
steps or when the maximum absolute value of the difference of H(`+1) and H(`) is
smaller than 10�6.

9. The Ricci-flat Kähler metric is given in terms of the Kähler potential

K =
1

2⇡k
ln
⇣
s↵H↵�̄s�̄

⌘
(B.10)

From this example, we see that for k = 1, s = ~z, and H = (d+2)⇥(d+2), this is just
the FS Kähler potential.

The metric found in this fixpoint procedure is called balanced.

In order to arrive at an expression for the CY metric gCY, we need to perform two more
steps. First, we need to account for the projective rescaling degrees of freedom. This is best
done by going to an affine patch. We go to the patch where we scale the coordinates with
the largest absolute values to unity in order to ensure numerical stability of the algorithm.
We denote the affine patch coordinates by ~z.

Second, we need to pull back the metric computed from the Kähler potential, which is
produced by the algorithm above, to the CY manifold. On the CY space X, we can think
of m of the remaining m + 3 affine coordinates as being (implicit) functions of the others.
Since the (3 + m) ⇥ (3 + m) metric ĝ in an affine patch but prior to pullback is given by

ĝab = @a@bK , (B.11)

the 3 ⇥ (3 + m) pullback map is given by

Cµa =
@za
@xµ

, (B.12)

where the xµ are local coordinates on X. It should be noted that this can be computed in
terms of derivatives of the defining equations with no need to actually solve the equations
for the m coordinates that are to be eliminated. The pulled back metric is then

gCY = i⇤(ĝ) = C · ĝCY · C† . (B.13)
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1.	Learn	Donaldson’s	H	matrix

Donaldson’s	algorithm:	algebraic	𝐾 from	𝐻

NN	that	predicts	𝐻
• Input	layer:	complex	structure	moduli	
• Output	layer:	𝐻 matrix	
• Predicted	𝐻 +	𝑠p at	points	à 𝐾 in	spectral	basis	à algebraic	metric
• Either	supervised	learning	
• or	semi-supervised	learning	with	MA/Ricci	loss	function	

Anderson	et	al	2012.04656,	Gerdes et	al	2211.12520,	cyjax

4. Compute the weights wi, i = 1, . . . , Np of the induced distribution of sampled points
on X. (These are not drawn from a flat prior even though the ambient points were.)
In terms of these weights, the numerical integration reduces to
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The sum over the points and the weights appear from the numerical integration.

7. Set H(`+1) =
⇣
H̃(`)

⌘�1
and return to the previous step. Alternatively, sample new

points and re-calculate the weights and then go to step 6.

8. Repeat until we reach a fixpoint, i.e. H(`+1)
⇡ H(`). In practice around 10-20 steps

are typically enough. We terminate the procedure either after a certain number of
steps or when the maximum absolute value of the difference of H(`+1) and H(`) is
smaller than 10�6.

9. The Ricci-flat Kähler metric is given in terms of the Kähler potential

K =
1

2⇡k
ln
⇣
s↵H↵�̄s�̄

⌘
(B.10)

From this example, we see that for k = 1, s = ~z, and H = (d+2)⇥(d+2), this is just
the FS Kähler potential.

The metric found in this fixpoint procedure is called balanced.

In order to arrive at an expression for the CY metric gCY, we need to perform two more
steps. First, we need to account for the projective rescaling degrees of freedom. This is best
done by going to an affine patch. We go to the patch where we scale the coordinates with
the largest absolute values to unity in order to ensure numerical stability of the algorithm.
We denote the affine patch coordinates by ~z.

Second, we need to pull back the metric computed from the Kähler potential, which is
produced by the algorithm above, to the CY manifold. On the CY space X, we can think
of m of the remaining m + 3 affine coordinates as being (implicit) functions of the others.
Since the (3 + m) ⇥ (3 + m) metric ĝ in an affine patch but prior to pullback is given by

ĝab = @a@bK , (B.11)

the 3 ⇥ (3 + m) pullback map is given by

Cµa =
@za
@xµ

, (B.12)

where the xµ are local coordinates on X. It should be noted that this can be computed in
terms of derivatives of the defining equations with no need to actually solve the equations
for the m coordinates that are to be eliminated. The pulled back metric is then

gCY = i⇤(ĝ) = C · ĝCY · C† . (B.13)
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Example:	supervised	learning	of	𝐻
• 𝑝 = 𝑥Ft + 𝑥Pt+ 𝑥Ht+ 𝑥_t+ 𝑥5t − 𝜓𝑥F𝑥P𝑥H𝑥_𝑥5
• 𝑘 = 3	 → 35-dim	basis	of	sections	𝑠p
• Input	Re	𝜓,	Im 𝜓,	Abs	𝜓
• Output	Re,	Im of	𝐻 components;	compare	with	Donaldson
• FF	NN,	LSE	loss	function,	ADAM	opt.	
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Figure 10: Clustering of elements in H for  = 10. Top row: Orange clusters correspond
to vanishing elements, blue clusters correspond to non-vanishing values. Bottom rows:

Close-up view of the blue clusters. The number of vertical lines is in close relation to the
number of equivariant components.

Layer Number of Nodes Activation Number of Parameters
input 3 – –

hidden 1 100 leaky ReLU 400
hidden 2 1000 leaky ReLU 101 000
hidden 3 1000 leaky ReLU 1 001 000
output N2

k identity 1000⇥N2
k + N2

k

Table 1: Neural network architecture for the neural network that learns the  -dependence
of H.

C.1 Supervised training with Donaldson’s algorithm

In designing and training the NN, we found that the result is not very sensitive to hyper-
parameter tuning and does not require complicated network architectures. For this paper,
we chose a simple feed-forward NN with 3 hidden layers of dimensions 100, 2000 and 2000
with (leaky) ReLU activation, cf. Table 1. The input is (the real part, imaginary part,
and absolute value of)  and the output are the N2

k independent (real and imaginary)
components of H.8

8
We ran experiments where we added (the real and imaginary part of) powers of  to the input.

However, for large  , positive powers tend to produce rather large features. So one should either normalize

them to unit variance (since we draw  randomly from a flat prior, it will already have roughly zero mean),

which is problematic if one wants to extrapolate beyond the training set. For fractional powers, one will

have to choose a branch or include all branches as features. Since the observed accuracy improvements are

rather small, we ended up using Re( ), Im( ), and | | as features.
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2.	Learn	Kähler potential directly

Model 
learnable parameters �

H Model 
learnable parameters ��z gab̄

gab̄

K
�

�z

�

Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.

10
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Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.
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2.	Learn	Kähler potential	directly

• Input:	points on	CY			
• Output:	prediction	for	𝐾

• Must	ensure 𝐾 is	globally defined
Guaranteed if expand in	section basis	(Donaldson,	Headrick-Nassar)
Or	construct embedding NN	(holomorphic or	bihomogeneous)
• Bihomogeneous NN:	

Input		𝑥9 → 𝑥9𝑥x → 𝑅𝑒, 𝐼𝑚 ;			Act.	fcn:	𝜎: 𝑥 → 𝑥H	
• 𝐾 = log	𝑊: ∘ 𝜎 ∘ ⋯ ∘ 𝜎 ∘ 𝑊P(𝑥9𝑥x)
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Example:	semisupervised learning	of	𝐾
• Semi-supervised	learning
• MAPE	version	of	MA	loss
• After	training:	
NN	à 𝐾à approximate	CY	
metric

• Also	non-symmetric	quintics
• Gradient	blow-ups/deep	NN	

Douglas	et	al 2012.04797
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NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

Appendix A. Plots and tables

(a) (b)

Figure 1: Distance to singular CY as function of  ,� in Equation (34) (Left) and  ,↵ in Equa-
tion (35) (Right)

Figure 2: The training curves for Equation (3) with  = 0.5, trained with Adam optimizer and
MAPE loss. The data for k2 500 500 500 1 was recorded every 10 epochs.
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3.	Direct	ML	of	metric
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Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.

10
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3.	Direct	ML	of	metric:	neural	network

• Input:	point on	CY
Quintic:	input	layer has	10	nodes	=	𝑅𝑒(𝑥�	), 𝐼𝑚 𝑥�
• Output:	metric	prediction	- different	Ansatze possible
9	(or	1)	node	– no	scaling	
• Semi-supervised	learning	using	custom	loss	function
• After	training:	
NN	à approximate	CY	metric	

Anderson	et	al	2012.04656,	Larfors et	al	2205.13408,	cymetric
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3.	Direct	ML	of	metric:	neural	network

Name Ansatz

Free gpr = gNN

Additive gpr = gFS + gNN

Multiplicative, element-wise gpr = gFS + gFS � gNN

Multiplicative, matrix gpr = gFS + gFS · gNN

�-model gpr = gFS + @@̄�

Table 1: Di↵erent Ansätze for the neural network prediction of the Ricci-flat metric.

together with a set of constraints that the neural network output (that is, the metric) has to satisfy.
Hence, the task is more akin to physics informed self-supervised learning or optimization than classical
’supervision’ with given input-output pairs. We check how well the output meets these constraints
by constructing error measures that encode them. Importantly, given the split of the initial data, the
quality of the output can be assessed on both the training and validation sets. For the validation set,
this check is performed by applying the trained network to the validation data.

From this brief summary, it is clear that designing a NN to perform a certain task involves choosing
a number of hyperparameters, that specify the network’s properties. For fully connected NNs, this
amounts to specifying the width and depth of the network, which activation functions to use, and the
number of batches and epochs. More advanced network components, such as convolutional or dropout
layers (see, for example, Ref. [29] for a recent discussion), require additional hyperparameters. For our
task, previous studies [32–34] have shown that a simple fully connected NN exhibits good performance.
Consequently, we focus on this setting, leaving studies involving more advanced NN architectures for
the future. We build the networks using TensorFlow [40], an ML library with functionalities that suit
our needs. In particular, TensorFlow allows to construct the NNs in a sequential manner, and has
di↵erentiation functions that allow us to compute derivatives with respect to the input data.

4.2 Network architectures

The basic idea underlying machine learning of CY metrics is to use a NN whose associated functions
f✓ represent metrics on the manifold. In other words, the NN input consists of a point p 2 X on the
CY manifold and its output represents a metric g(p) at this point. There are a number of concrete
realizations of this idea. Since CY three-folds X are complex manifolds, their metrics g(p) at each point
p 2 X can be written, relative to a local choice of complex coordinates, as a Hermitian 3 ⇥ 3 matrix.
The first, and most obvious, approach is then to let the NN predict the nine independent entries (three
real entries on the diagonal, and three complex entries on the o↵-diagonal) of this matrix. While this
is possible, it does not take advantage of the mathematical knowledge we have about CY manifolds.
For example, equation (2.2) shows that the CY metric is given by an exact correction to some reference
Kähler metric gFS. Moreover, by constructing CY manifolds as a hypersurfaces or complete intersection
in an ambient space, one can construct the metric gFS explicitly by pullback from the ambient space A.

The cymetric package realizes five choices for how the metric gpr predicted by the NN is related to
the function gNN that the NN actually represents. These possibilities are summarized in Table 1. The
first and most obvious choice, gpr = gNN, has been included for reference but is by no means the
optimal one. A metric is required to be non-singular and this condition can easily be violated for a
randomly initialized or stochastically trained NN. A NN which ’accidentally’ represents a singular or
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• Different	Ansatze possible	for	metric	prediction	𝑔Cm
Encode	more/less	of	math	knowledge
• In	the	cymetric package,	can	choose	between

On	quintic,	same	as	
learning	K	
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Example:	direct	learning	of	g

• Fermat	quintic
• FF	NN,	fully	connected,	GELU
• 64-64-64	network
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Summary	of	this	lecture

• ML	improves	speed,	performance,	and	scope	for	CY	metric	approx’s
• Architecture	determined	by	what	you	want	to	learn
• Loss	functions	encode	math/physics	constraints
• PyTorch,	TensorFlow,	JAX:	ML	libraries,	efficient	auto-differentiation	
• Open-source	packages	on	GitHub
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Point	generator
ML	model
(neural	net)

Metric	
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Loss	functions Error	measuresModuli


