Topic 3: String Theory Compactifications, Calabi-Yau Manifolds and Ricci-flat Metrics

Lecture 4:CY metrics from NNs

What to learn, how to do it (efficiently)?

Magdalena Larfors, Uppsala University
ML in Maths and Physics 2023

Al4Research

Vetenskapsradet

Brief summary of Lara’s & James’ Lectures

 Calabi-Yau manifolds: compact, complex, Kahler

* Admit unique Ricci-flat metric
[for fixed Kahler and complex structures]

* Large databases of example manifolds
* The Ricci-flat metric, gy is something we want to compute
* This requires solving a PDE on a compact, curved space

Aim of these |lectures

* Show how ML can be used in learning CY metrics
* Partial overview of past work...
e ... with emphasis on open-source packages

* Goals
Know which packages exist and what they are designed to do
Develop familiarity with (some) methods and packages

Outline: ML of CY metrics

Lecture 1: overview

* Intro ML implementations
Available packages

* Point sample recap:
measures and patches

* Training and loss functions
e Accuracy and error measures
e Different models/neural nets

Main references

Lecture 2: details

* Direct learning of CY metrics
(details and demo)

e Advanced methods
Goals and realizations

Tutorial
* Implementations & experiments

Anderson et al 2012.04656, Douglas et al 2012.04797, Larfors et al 2205.13408, Gerdes et al 2211.12520

Numerical approximations of CY metrics

Traditional methods: cf James’ & Lara’s lectures
* Donaldson’s algorithm (iterative fixed point scheme)

* Headrick-Nassar functional minimization

- Kahler potential using spectral basis

Machine learning methods:

» ML-assisted traditional methods = Kahler potential
* Direct ML = Kahler potential or CY metric
Accuracy checks same for all methods

Benefits of ML approach

e Significant improvement of speed, performance, and scope
More accurate approximation for given compute
Better scaling
More advanced CYs (eg CICY; toric ambient spaces)
Learn moduli dependence (realized for 1-2 cpl str moduli on quintic CY)

* Generalize to SU(3) structures (realized for Strominger-Hull ansatz on quintic CY)

* PyTorch, TensorFlow, JAX: ML libraries for auto-differentiation
- efficiently compute derivatives and optimize loss functions

* Drawback: in contrast to Donaldson, lack kK — oo proof

Setting up the problem:

Problem: find Ricci flat CY metric gcy <= find Jcy that solves the MA eq.
Jey ANdey N Jey —kQAQ=kd Volcy

where K is some complex constant.

While /.y is unknown we know () and /g

* Find Joy = Jrs + 00¢ that solves MA eq.
* We will train a neural network to predict gy~ Jcy

Setting up the problem:

Problem: find Ricci flat CY metric gcy <= find Jcy that solves the MA eq.
Jey N Jdey N Jey —kQAQ=kd Volcy

where Kk is some complex constant.

Let’s solve this on a quintic CY, X c P*, defined as zero setp = 0

In affine coordinates {z,}, can compute
dz{Ndz,\dz [= _

e Q= asz > | p=0]fs =-—00 X1 In(z,Z) | p=0

* Find (global) Joy = Jrs + 00¢ that solves MA eq.

Machine Learning implementation template

Moduli
a . N
Point
sample
- /

B ML model D

K(neural net)J

CY metrics from NNs - Lecture 1

Error measures

a

)

Metric
prediction

\

/

Machine Learning implementation template

* A CY metric package provides implementation of template
 While structure is similar, architecture choices abound

Modul Lossfunctions Error measures

ML model
Point sample Metric prediction
(neural net)

CY metrics from NNs - Lecture 1

CY metric ML packages on Github

* Holomorphic and bihomogeneous networks Douglas & Qi
ML using spectral ansatz, CY hypersurface in P™
python/TensorFlow https://github.com/yidig7/MLGeometry
* cymetric Ruehle & Schneider

direct ML methods, works on CICYs and Kreuzer-Skarke CY
python/TensorFlow & Mathematica
https://github.com/pythoncymetric/cymetric

* Cyjax Gerdes & Krippendorf
ML Donaldson’s algebraic ansatz of Kahler potential, CY hypersurface in P"
python/JAX https://github.com/ml4physics/cyjax

Open source packages, can be freely used for projects (& contributions welcome)

CY metrics from NNs - Lecture 1 10

Point sample

CY metrics from NNs - Lecture 1

11

Weights and weights

* In the following slides we will reuse the term “weights” for discrete
Integration measures

* We also use the term “weights” for some parameters of neural
networks

* Hopefully this will not cause too much confusion...

Generating a random point sample

Goal: Random set of points on CY, sampled w.r.t. known measure dA
Why?
* We need to compute integrals (e.g to check accuracy)

1
/ dVolgy f = / g4 LYolov
v v dA

0 O 0 I{ N
* Numerically, evaluate integral as weighted sum % Zwif(pq;)
1=1

where dVolg

YT A

dVolo = QA0 = dVolgy = %dVOIQ

Pi

Generating a random point sample

Let X:p = 0 < P* be the quintic CY

e Pick random point on IP#, reject all points off X.

* Pick some ambient coordinates, solve for the rest usingp = 0
* Markov Chain Monte Carlo method

e Algorithm using theorem by Shiffman-Zelditch
Douglas et. al: 06

Generating a random point sample

Algorithm applied to quintic X:p =0 c P* Douglas et. al: 06

 Sample uniformly distributed points on S?, then mod out phase
~ random points on P*, distributed w.r.t. FS measure on P4

* 2 such points g, , ~ line in P4, intersects X in 5 points
Solve p(q; + tg,) =0 —> 5 solutions t*

* Repeating this process M times ~» 5M random points on X
e Shiffman-Zelditch: these points are distributed w.r.t. FS measure on X

Generalizations beyond quintic = tomorrow.

Coordinates, patches and weights

Algorithm gives point sample {px} on quintic X:p = 0 c P*
* Homogeneous coordinates {px} = {xo, X1, X5, X3, X4} ; X;~ax;

* Select patch: pick any* non-zero x;. Say this is x
X1 X2 X3 X4}

—> affine coordinates {py } =121, 25, 23, 24} = {xo " %0 %o X0

3 lin. indep. coordinates, since p(xg, X1, X2, X3,%X4) = 0
* Compute (1, Jrc at point = weights w; for numerical integrals

*Be clever: e.g. pick x; of largest norm = numerical stability

ML models: Set-up & train

Neural nets for CY metrics: generalities

* Input and output layers

* Hidden layers;
trainable parameters 6, = (Wy, by,)

* Fully connected, feed-forward

* (Semi)supervised learning:
input layer hidden layer 1 hidden layer 2 output layer Minimize (Custom) IOSS fu nctions

Zy = 0, (Wyzp_1 + by)

I

e After training:
NN = approximate CY metric

”weight bias

Act. fcn

CY metrics from NNs - Lecture 1 18

Neural nets: generalities

Architectural choices

* What to predict
metric, Kahler pot, H-matrix?

* Encode constraints in NN or loss?
(global, complex, Kahler...)

Then train
input layer hidden layer 1 hidden layer 2 output layer P Minimize |OSS functions
And check performance

Zy = 0 (Wyzy—1 + by)

* Error measures

CY metrics from NNs - Lecture 1 19

Training and Loss functions

Cf. Fabian Ruehle’s lecture

CY metrics from NNs - Lecture 1 20

Training and Loss functions

e Recall:
PyTorch, TensorFlow, JAX: ML libraries for auto-differentiation
— efficiently compute derivatives and optimize loss functions

oL

(2) (i) _
o\ — 0 a@H(i)

CY metrics from NNs - Lecture 1

21

Training the network

* NN with layers

Zy = 0, (Wyzy_1 + by)

* Input = prediction = loss
Training by gradient descent

* Compute loss gradients at points
* Move towards smaller loss

* Repeat for many points

CY metrics from NNs - Lecture 1 == 22

Training the network

Loss function depends on weights

* Backpropagation
Layer by layer from end to start
Loss gradients by chain rule
Update weights to minimize loss

o) _ gl _ 9L

 Stochastic gradient descent 00(?)
Mini-batches and epochs
avoid getting stuck in local min

e -
\\\\\ -

o _— _ g
- o AN

RNt
SRR
ERNRRRRNRE

RNNRRY

* ML libraries (TensorFlow etc) have

built in algorithms for this TR ’/\ Y
Uy

AR
e RN

CY metrics from NNs - Lecture 1

input layer hidden layer 1 hidden layer 2

So what loss functions should we use?

Loss functions encode math constraints

* We train the network to get Ricci-flat metric (in given Kahler class)
 We don’t know metric --- supervised learning not good*

* Resolution: semi-supervised learning
1. Encode mathematical constraints as (scalar) loss functions
2. Train network (adapt layer weights) to minimize loss functions

* E.g. satisfy Monge-Ampere eq ~ minimize Monge-Ampere loss

1 det gy
K QAQ

|

n

Loss functions encode math constraints

* We train the network to get Ricci-flat metric (in given Kahler class)
 Satisfy Monge-Ampere eq ~ minimize MA loss

1 det gy
kKQAQ

n

o -

e Set Ricci tensor to zero ~ minimize Ricci loss

Lricci = ||R]|, = ||00 In det gpr

n

* Derivatives: compute by tweaking ML auto-differentiation methods

More loss functions

Also might need to check
* manifold-ness: match metrics on patch overlaps

1
Ltransition — E g
(s.t)

* Kahler-ity: check d J,, = 0

Loy =D |Reipll, + IScill,, with cix = g — 8 and g7 = kg
i

gé:) — T(s,p) 'gérS) T

(s,t) , T(s,+) transition matrix

n

* Same Kahler class [, ~/gs (not needed on quintic)

Architectural choices will determine which loss functions we need
—2Importance of loss functions should be tunable (on/off)

Accuracy and performance

Check performance

» After the network is trained, want to check performance
» Separate test/validation sets

Input and performance
Input: N points p;, randomly distributed w.r.t to known measure dA on CY.

After training, measure performance:
does the MA equation hold? is the metric Ricci flat?

Input and performance
Input: N points p;, randomly distributed w.r.t to known measure dA on CY.

After training, measure performance:
does the MA equation hold? is the metric Ricci flat?

Check via established benchmarks:
QANQ

1 1
o= , R = Ry | .

using Monte Carlo integration for any function f

dVol 1 . dVol
/deo|CYf _ /X YA f — N Z wif|, — with w; = G

1l —k

Pi

dA dA

Different ML implementations

Neural nets: generalities

* Input and output layers

* Hidden layers; trainable weights
* (Semi)supervised learning

* Minimize (custom) loss functions

e After training:
NN - approximate CY metric

CY metrics from NNs - Lecture 1 32

ML implementations

1. Learn Donaldson’s H matrix
cyjax

2. Learn Kahler potential
Hol/Bihom network

3. Learn metric
cymetric

)~
1

&N

-1

)
H|—
Model / -
earnable parameters 6 (N ‘ l
< _
— 8ab
Model
—>
learnable parameters @

)-8

8ab

AN

earnable parameters

W
»L Model @J' g,

S

Pro/con

Learning H or K Learning metric

Pro Pro

e Kahler * Always learn 9 comps of 3*3
o GIobaIIy defined Hermitian metric

* Generalizes
(e.g. non-Kahler SH metric)

Con
* Not Kahler
* Not globally defined

* Donaldson’s alg:
convergence as k — oo

Con
e Scaling (of spectral basis)
* No generalization beyond Kahler

1. Learn Donaldson’s H matrix

Neural Net

~

-

Model A /

earnable parameters 0

CY metrics from NNs - Lecture 1 35

1. Learn Donaldson’s H matrix

Donaldson’s algorithm:
Iterate T-operator until get balanced H

K= ——1In

oH
21k ?

Compute Kahler potential 1 -
(saHa353)

* s, monomials of order k (sections of holomorphic line bundle)

* H: N;, XN}, Hermitian matrix, “balanced metric”

* Larger k gives larger set of s, > more accurate K

* Problem: Curse of dimensionality, need to use discrete symmetries

1. Learn Donaldson’s H matrix

) . . 1
Donaldson’s algorithm: algebraic K from H K = T In (SQHQBSB)
NN that predicts H
* Input layer: complex structure moduli
e OQutput layer: H matrix
* Predicted H + s, at points = K in spectral basis = algebraic metric
 Either supervised learning

* or semi-supervised learning with MA/Ricci loss function
Anderson et al 2012.04656, Gerdes et al 2211.12520, cyjax

Example: supervised learning of H

Anderson et al 2012.04656

oD = x3 + XD+ X3+ x3+ x7 — PXgX1X2X3X4

 k = 3 — 35-dim basis of sections s,

* Input Re Y, Im ¢, Abs Y

e Qutput Re, Im of H components; compare with Donaldson

* FF NN, LSE loss funCt|On, ADAM opt. o of the test set
Layer | Number of Nodes | Activation | Number of Parameters 0.3
input 3 - -
hidden 1 100 leaky ReLLU 400 g 0.2
hidden 2 1000 leaky ReLLU 101000
hidden 3 1000 leaky ReLLU 1001 000 0.1
output N ,? identity 1000x N, ,3 + N, ,3
0.0 Y

CY metrics from NNs - Lecture 1

Algorithm
BN Donaldson
B NN predictio
B nearest value

=

38

2. Learn Kahler potential directly

(")

Model

learnable parameters 6

- _J

(o)

CY metrics from NNs - Lecture 1

39

2. Learn Kahler potential directly

Douglas et al 2012.04797, holomorphic and bihomogeneous NN

* Input: points on CY
e Qutput: prediction for K

* Must ensure K is globally defined
Guaranteed if expand in section basis (bonaldson, Headrick-Nassar)
Or construct embedding NN (holomorphic or bihomogeneous)

* Bihomogeneous NN:
Input x, - x,X;, > Re,Im ; Act.fcn:o:x - x

K =logW%ogo--00go0oW(x,x},)

2

CY metrics from NNs - Lecture 1 40

Example: semisupervised learning of K

e Semi-supervised learning
* MAPE version of MA loss

e After training:
NN = K = approximate CY
metric

* Also non-symmetric quintics
e Gradient blow-ups/deep NN

Douglas et al 2012.04797

. The training curves for Equation (3) with 1) = 0.5, trained with Adam optimizer and

MAPE loss. The data for k2_500_500_500_1 was recorded every 10 epochs.

CY metrics from NNs - Lecture 1 41

3. Direct ML of metric

(i<

4)
Model
dearnable parameters 0 g

3. Direct ML of metric: neural network

* Input: point on CY
Quintic: input layer has 10 nodes = Re(x;), Im(x;)

e Qutput: metric prediction - different Ansatze possible
9 (or 1) node — no scaling

e Semi-supervised learning using custom loss function

 After training:

NN - approximate CY metric
Anderson et al 2012.04656, Larfors et al 2205.13408, cymetric

3. Direct ML of metric: neural network

* Different Ansatze possible for metric prediction g,
Encode more/less of math knowledge

* In the cymetric package, can choose between

Name Ansatz
Free Jpr = gNN
Additive gpr = gFS T gNN
Multiplicative, element-wise | gpr = grs + grs © gNN
Multiplicative, matrix Jgpr = JFS + gFS - gNN
¢-model Jpr = grs + 009

On quintic, same as
learning K

Example: direct learning of g Larfors et al 2205.13408

* Fermat quintic
* FF NN, fully connected, GELU
* 64-64-64 network

AAAAA

CY metrics from NNs - Lecture 1

45

Summary of this lecture

ML improves speed, performance, and scope for CY metric approx’s
* Architecture determined by what you want to learn

* Loss functions encode math/physics constraints

e PyTorch, TensorFlow, JAX: ML libraries, efficient auto-differentiation
* Open-source packages on GitHub

Moduli Loss functions Error measures

ML model Metric

Point generator dicti |
(neural net) prediction

