Topic 3: String Theory Compactifications, Calabi-Yau Manifolds and Ricci-flat Metrics

Lecture 4:CY metrics from NNs What to learn, how to do it (efficiently)?

Magdalena Larfors, Uppsala University ML in Maths and Physics 2023

Al4Research

Vetenskapsrådet

Brief summary of Lara's & James' Lectures

- Calabi-Yau manifolds: compact, complex, Kähler
- Admit unique Ricci-flat metric [for fixed Kähler and complex structures]
- Large databases of example manifolds
- The Ricci-flat metric, g_{CY} is something we want to compute
- This requires solving a PDE on a compact, curved space

Aim of these lectures

- Show how ML can be used in learning CY metrics
- Partial overview of past work...
- ... with emphasis on open-source packages
- Goals

Know which packages exist and what they are designed to do Develop familiarity with (some) methods and packages

Outline: ML of CY metrics

Lecture 1: overview

- Intro ML implementations Available packages
- Point sample recap: measures and patches
- Training and loss functions
- Accuracy and error measures
- Different models/neural nets

Lecture 2: details

- Direct learning of CY metrics (details and demo)
- Advanced methods Goals and realizations

Tutorial

• Implementations & experiments

Main references

Anderson et al 2012.04656, Douglas et al 2012.04797, Larfors et al 2205.13408, Gerdes et al 2211.12520

Numerical approximations of CY metrics

Traditional methods:

cf James' & Lara's lectures

- Donaldson's algorithm (iterative fixed point scheme)
- Headrick-Nassar functional minimization
- \rightarrow Kähler potential using spectral basis

Machine learning methods:

- ML-assisted traditional methods ightarrow Kähler potential
- Direct ML \rightarrow Kähler potential or CY metric

Accuracy checks same for all methods

Benefits of ML approach

- Significant improvement of speed, performance, and scope More accurate approximation for given compute Better scaling More advanced CYs (eg CICY; toric ambient spaces) Learn moduli dependence (realized for 1-2 cpl str moduli on quintic CY)
- Generalize to SU(3) structures (realized for Strominger-Hull ansatz on quintic CY)
- PyTorch, TensorFlow, JAX: ML libraries for auto-differentiation
 → efficiently compute derivatives and optimize loss functions
- Drawback: in contrast to Donaldson, lack $k \rightarrow \infty$ proof

Setting up the problem:

Problem: find Ricci flat CY metric $g_{CY} \iff$ find J_{CY} that solves the MA eq.

$$J_{CY} \wedge J_{CY} \wedge J_{CY} = \kappa \ \Omega \wedge \overline{\Omega} = \kappa \ \mathsf{d} \ \mathsf{Vol}_{CY}$$

where κ is some complex constant.

While J_{CY} is unknown we know Ω and J_{FS}

- Find $J_{CY} = J_{FS} + \partial \bar{\partial} \phi$ that solves MA eq.
- We will train a neural network to predict $g_{CY} \sim J_{CY}$

Setting up the problem:

Problem: find Ricci flat CY metric $g_{CY} \iff$ find J_{CY} that solves the MA eq.

$$J_{CY} \wedge J_{CY} \wedge J_{CY} = \kappa \ \Omega \wedge \overline{\Omega} = \kappa \ \mathsf{d} \ \mathsf{Vol}_{CY}$$

where κ is some complex constant.

Let's solve this on a quintic CY, $X \subset \mathbb{P}^4$, defined as zero set p = 0In affine coordinates $\{z_a\}$, can compute

•
$$\Omega = \frac{dz_1 \wedge dz_2 \wedge dz_3}{\partial_{z_4} p}|_{p=0} \qquad J_{FS} = \frac{i}{2\pi} \partial \bar{\partial} \sum_{1}^4 \ln(z_i \overline{z_i})|_{p=0}$$

• Find (global) $J_{CY} = J_{FS} + \partial \overline{\partial} \phi$ that solves MA eq.

Machine Learning implementation template

Machine Learning implementation template

- A CY metric package provides implementation of template
- While structure is similar, architecture choices abound

CY metric ML packages on Github

- Holomorphic and bihomogeneous networks Douglas & Qi ML using spectral ansatz, CY hypersurface in \mathbb{P}^n python/TensorFlow <u>https://github.com/yidiq7/MLGeometry</u>
- cymetric direct ML methods, works on CICYs and Kreuzer-Skarke CY python/TensorFlow & Mathematica <u>https://github.com/pythoncymetric/cymetric</u>
- Cyjax ML Donaldson's algebraic ansatz of Kähler potential, CY hypersurface in \mathbb{P}^n python/JAX <u>https://github.com/ml4physics/cyjax</u>

Open source packages, can be freely used for projects (& contributions welcome)

Point sample

Weights and weights

- In the following slides we will reuse the term "weights" for discrete integration measures
- We also use the term "weights" for some parameters of neural networks
- Hopefully this will not cause too much confusion...

Generating a random point sample

Goal: Random set of points on CY, sampled w.r.t. known measure dA Why?

• We need to compute integrals (e.g to check accuracy)

$$\int_X \mathrm{dVol}_{\mathrm{CY}} f = \int_X dA \, \frac{\mathrm{dVol}_{\mathrm{CY}}}{dA} \, f$$

• Numerically, evaluate integral as weighted sum

$$\frac{\kappa}{6N} \sum_{i=1}^{N} w_i f(p_i)$$

where $w_i = \frac{\mathrm{dVol}_{\Omega}}{dA}\Big|_{p_i}$ $\mathrm{dVol}_{\Omega} = \Omega \wedge \bar{\Omega} \Rightarrow \mathrm{dVol}_{\mathrm{CY}} = \frac{\kappa}{3!} \mathrm{dVol}_{\Omega}$

Generating a random point sample

Let $X: p = 0 \subset \mathbb{P}^4$ be the quintic CY

- Pick random point on \mathbb{P}^4 , reject all points off X.
- Pick some ambient coordinates, solve for the rest using p=0
- Markov Chain Monte Carlo method
- Algorithm using theorem by Shiffman-Zelditch

Douglas et. al: 06

Generating a random point sample

Algorithm applied to quintic $X: p = 0 \subset \mathbb{P}^4$ Douglas et. al: 06

- Sample uniformly distributed points on S^9 , then mod out phase \rightarrow random points on \mathbb{P}^4 , distributed w.r.t. FS measure on \mathbb{P}^4
- 2 such points $q_{1,2} \rightarrow \text{line in } \mathbb{P}^4$, intersects X in 5 points Solve $p(q_1 + tq_2) = 0 \rightarrow 5$ solutions t^*
- Repeating this process M times $\rightarrow 5M$ random points on X
- Shiffman-Zelditch: these points are distributed w.r.t. FS measure on X

Generalizations beyond quintic \rightarrow tomorrow.

Coordinates, patches and weights

Algorithm gives point sample $\{p_K\}$ on quintic $X: p = 0 \subset \mathbb{P}^4$

- Homogeneous coordinates $\{p_K\} = \{x_0, x_1, x_2, x_3, x_4\}$; $x_i \sim \alpha x_i$
- Select patch: pick any* non-zero x_i . Say this is x_0

$$\rightarrow$$
 affine coordinates $\{p_K\} = \{z_1, z_2, z_3, z_4\} = \left\{\frac{x_1}{x_0}, \frac{x_2}{x_0}, \frac{x_3}{x_0}, \frac{x_4}{x_0}\right\}$

- 3 lin. indep. coordinates, since $p(x_0, x_1, x_2, x_3, x_4) = 0$
- Compute Ω , J_{FS} at point \rightarrow weights w_i for numerical integrals

*Be clever: e.g. pick x_i of largest norm \rightarrow numerical stability

input layer hidden layer 1 hidden layer 2

output layer

ML models: Set-up & train

Neural nets for CY metrics: generalities

- Input and output layers
- Hidden layers; trainable parameters $\theta_k = (W_k, b_k)$
- Fully connected, feed-forward
- (Semi)supervised learning: Minimize (custom) loss functions
- After training:
 NN → approximate CY metric

Neural nets: generalities

$$z_k = \sigma_k(W_k z_{k-1} + b_k)$$

Architectural choices

- What to predict metric, Kähler pot, H-matrix?
- Encode constraints in NN or loss? (global, complex, Kähler...)

Then train

- Minimize loss functions
 And check performance
- Error measures

$\frac{\partial L}{\partial \theta^{(n)}} = \operatorname{Trainging}_{\partial z^{(n)}} \operatorname{and}_{\partial \theta^{(n)}} \operatorname{Loss} functions$

 \Rightarrow

 $\frac{\partial L}{\theta^{(n-1)}} = \frac{\partial L}{\partial z^{(n)}} \frac{\partial z^{(n)}}{\partial z^{(n-1)}} \frac{\partial z^{(n-1)}}{\partial \theta^{(n-1)}}$

 $\frac{\partial L}{\theta^{(n-2)}} = \frac{\mathsf{Cf. Figbian Burch log(n-2)}}{\partial z^{(n)}} \frac{\partial \mathcal{L}}{\partial z^{(n-1)}} \frac{\partial \mathcal{L}}{\partial z^{(n-2)}} \frac{\partial \mathcal{L}}{\partial \theta^{(n-2)}}$

 $\theta^{(i)} \to \theta^{(i)} - \alpha \frac{\partial L}{\partial \theta^{(i)}}$

cent - Detalis

Training and Loss functions

• Recall:

PyTorch, TensorFlow, JAX: ML libraries for auto-differentiation → efficiently compute derivatives and optimize loss functions

Training the network

• NN with layers

$$z_k = \sigma_k(W_k z_{k-1} + b_k)$$

- Input \rightarrow prediction \rightarrow loss Training by gradient descent
- Compute loss gradients at points
- Move towards smaller loss
- Repeat for many points

Gradient Descent - Details

Training the network

Loss function depends on weights

- Backpropagation Layer $\frac{\partial L}{\partial \theta(h)}$ layer $\frac{\partial F}{\partial \theta(n)}$ m end to start Loss gradients by chain rule Update weight $\frac{\partial L}{\partial z(n)} \frac{\partial z(n-1)}{\partial z(n-1)}$ minimize loss
- Stochastic gradjent descent Miniabatches and epochs⁽ⁿ⁻²⁾
 avoid getting stuck in local min
- ML libraries (TensorFlow etc) have built in algorithms for this

	input layer	hidden layer 1	hidden layer 2	output layer
		_		
$\rightarrow \theta^{(i)}$ –	$\alpha \frac{\partial L}{\partial \theta^{(i)}}$			

 $\theta^{(i)}$

So what loss functions should we use?

Loss functions encode math constraints

- We train the network to get Ricci-flat metric (in given Kähler class)
- We don't know metric --- supervised learning not good*
- Resolution: semi-supervised learning
 1. Encode mathematical constraints as (scalar) loss functions
 2. Train network (adapt layer weights) to minimize loss functions
- E.g. satisfy Monge-Ampere eq → minimize Monge-Ampere loss

$$\mathcal{L}_{\mathsf{MA}} = \left| \left| 1 - \frac{1}{\kappa} \frac{\det g_{\mathsf{pr}}}{\Omega \wedge \bar{\Omega}} \right| \right|_{n}$$

Loss functions encode math constraints

- We train the network to get Ricci-flat metric (in given Kähler class)
- Satisfy Monge-Ampere eq → minimize MA loss

$$\mathcal{L}_{\mathsf{MA}} = \left| \left| 1 - rac{1}{\kappa} rac{\mathsf{det} \, g_{\mathsf{pr}}}{\Omega \wedge ar{\Omega}}
ight|
ight|_n$$

• Set Ricci tensor to zero \rightarrow minimize Ricci loss

$$\mathcal{L}_{\text{Ricci}} = ||R||_n = ||\partial\bar{\partial} \ln \det g_{\text{pr}}||_n$$

• Derivatives: compute by tweaking ML auto-differentiation methods

More loss functions

Also might need to check

• manifold-ness: match metrics on patch overlaps

$$\mathcal{L}_{\text{transition}} = \frac{1}{d} \sum_{(s,t)} \left| \left| g_{\text{pr}}^{(t)} - T_{(s,t)} \cdot g_{\text{pr}}^{(s)} \cdot T_{(s,t)}^{\dagger} \right| \right|_{n} \quad , \quad T_{(s,t)} \text{ transition matrix}$$

• Kähler-ity: check
$$d J_{pr} = 0$$

$$\mathcal{L}_{dJ} = \sum_{ijk} ||\Re c_{ijk}||_n + ||\Im c_{ijk}||_n, \text{ with } c_{ijk} = g_{i\bar{j},k} - g_{k\bar{j},i} \text{ and } g_{i\bar{j},k} = \partial_k g_{i\bar{j}}$$

• Same Kähler class $J_{pr} \sim J_{FS}$ (not needed on quintic)

Architectural choices will determine which loss functions we need \rightarrow Importance of loss functions should be tunable (on/off)

Accuracy and performance

Check performance

- After the network is trained, want to check performance
- Separate test/validation sets

Input and performance

Input: N points p_i , randomly distributed w.r.t to known measure dA on CY. After training, measure performance:

does the MA equation hold? is the metric Ricci flat?

Input and performance

Input: N points p_i , randomly distributed w.r.t to known measure dA on CY.

After training, measure performance:

does the MA equation hold? is the metric Ricci flat?

Check via established benchmarks:

$$\sigma = \frac{1}{\text{Vol}_{CY}} \int_{X} \left| 1 - \kappa \; \frac{\Omega \wedge \overline{\Omega}}{(J_{pr})^{3}} \right| \;, \; \mathcal{R} = \frac{1}{\text{Vol}_{CY}} \int_{X} |R_{pr}|$$

using Monte Carlo integration for any function f

$$\int_{X} d\text{Vol}_{CY} f = \int_{X} \frac{d\text{Vol}_{CY}}{dA} dA f = \frac{1}{N} \sum_{i} w_{i} f|_{p_{i}} \text{ with } w_{i} = \frac{d\text{Vol}_{CY}}{dA}|_{p_{i}}$$

input layer hidden layer 1 hidden layer 2 output layer 0 output layer

Neural nets: generalities

- Input and output layers
- Hidden layers; trainable weights
- (Semi)supervised learning
- Minimize (custom) loss functions
- After training:
 NN → approximate CY metric

ML implementations

Learn Donaldson's H matrix 1. cyjax

2. Learn Kähler potentiaH

 $g_{a\bar{b}}$

3. Learn metric

> Model learnable parameters θ

Hymetric

Ψ Model $g_{a\bar{b}}$ \vec{z} learnable parameters θ

 \mathbf{N}

learnabl

Pro/con

Learning H or K

Pro

- Kähler
- Globally defined
- Donaldson's alg: convergence as $k \to \infty$

Con

- Scaling (of spectral basis)
- No generalization beyond Kähler

Learning metric

Pro

- Always learn 9 comps of 3*3 Hermitian metric
- Generalizes (e.g. non-Kähler SH metric)

Con

- Not Kähler
- Not globally defined

1. Learn Donaldson's H matrix

 \overrightarrow{Z}

1. Learn Donaldson's H matrix

Donaldson's algorithm:

Iterate T-operator until get balanced H

Compute Kähler potential

$$K = \frac{1}{2\pi k} \ln \left(s_{\alpha} H_{\alpha \bar{\beta}} s_{\bar{\beta}} \right)$$

- s_{α} monomials of order k (sections of holomorphic line bundle)
- $H: N_k \times N_k$ Hermitian matrix, "balanced metric"
- Larger k gives larger set of $s_{\alpha} \rightarrow$ more accurate K
- Problem: Curse of dimensionality, need to use discrete symmetries

1. Learn Donaldson's H matrix

Donaldson's algorithm: algebraic K from H

$$K = \frac{1}{2\pi k} \ln \left(s_{\alpha} H_{\alpha \bar{\beta}} s_{\bar{\beta}} \right)$$

NN that predicts *H*

- Input layer: complex structure moduli
- Output layer: *H* matrix
- Predicted $H + s_{\alpha}$ at points $\rightarrow K$ in spectral basis \rightarrow algebraic metric
- Either supervised learning
- or semi-supervised learning with MA/Ricci loss function

<u>Anderson et al</u> 2012.04656, <u>Gerdes et al</u> 2211.12520, cyjax

Example: supervised learning of H

Anderson et al 2012.04656

- $p = x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 \psi x_0 x_1 x_2 x_3 x_4$
- $k = 3 \rightarrow 35$ -dim basis of sections s_{α}
- Input Re ψ , Im ψ , Abs ψ
- Output Re, Im of H components; compare with Donaldson

Layer	Number of Nodes	Activation	Number of Parameters
input	3		—
hidden 1	100	leaky ReLU	400
hidden 2	1000	leaky ReLU	101000
hidden 3	1000	leaky ReLU	1001000
output	N_k^2	identity	$1000 \times N_k^2 + N_k^2$

• FF NN, LSE loss function, ADAM opt.

2. Learn Kähler potential directly

2. Learn Kähler potential directly

Douglas et al 2012.04797, holomorphic and bihomogeneous NN

- Input: points on CY
- Output: prediction for *K*
- Must ensure K is globally defined Guaranteed if expand in section basis (Donaldson, Headrick-Nassar) Or construct embedding NN (holomorphic or bihomogeneous)
- Bihomogeneous NN:

Input $x_a \to x_a \overline{x_b} \to Re, Im$; Act. fcn: $\sigma: x \to x^2$

• $K = \log W^d \circ \sigma \circ \cdots \circ \sigma \circ W^1(x_a \overline{x_b})$

Example: semisupervised learning of K

- Semi-supervised learning
- MAPE version of MA loss
- After training: NN $\rightarrow K \rightarrow$ approximate CY metric
- Also non-symmetric quintics
- Gradient blow-ups/deep NN

The training curves for Equation (3) with $\psi = 0.5$, trained with Adam optimizer and MAPE loss. The data for k2_500_500_500_1 was recorded every 10 epochs.

3. Direct ML of metric

3. Direct ML of metric: neural network

- Input: point on CY *Quintic: input layer has 10 nodes = Re(x_I), Im(x_I)*
- Output: metric prediction different Ansatze possible 9 (or 1) node – no scaling
- Semi-supervised learning using custom loss function
- After training:
 NN → approximate CY metric

Anderson et al 2012.04656, Larfors et al 2205.13408, cymetric

3. Direct ML of metric: neural network

- Different Ansatze possible for metric prediction g_{pr} Encode more/less of math knowledge
- In the cymetric package, can choose between

Name	Ansatz	
Free	$g_{\rm pr} = g_{\rm NN}$	
Additive	$g_{\rm pr} = g_{\rm FS} + g_{\rm NN}$	
Multiplicative, element-wise	$g_{ m pr} = g_{ m FS} + g_{ m FS} \odot g_{ m NN}$	
Multiplicative, matrix	$g_{\rm pr} = g_{\rm FS} + g_{\rm FS} \cdot g_{\rm NN}$	
ϕ -model	$g_{\mathrm{pr}} = g_{\mathrm{FS}} + \partial \bar{\partial} \phi$	On quintic, same as

learning K

Example: direct learning of g

Larfors et al 2205.13408

model - muit 800 matrix

free

80

100

100

epachs

• FF NN, fully connected, GELU

d) £4 - Validation

model

WAR

add

5-0-0

epochs

68

40

rustr

• 64-64-64 network

58-7

58-1

Summary of this lecture

- ML improves speed, performance, and scope for CY metric approx's
- Architecture determined by what you want to learn
- Loss functions encode math/physics constraints
- PyTorch, TensorFlow, JAX: ML libraries, efficient auto-differentiation
- Open-source packages on GitHub

