
Lecture	5:	CY	Metrics	from	NNs
Package	details	&	Advanced	methods	

Magdalena	Larfors,	Uppsala	University
ML	in	Maths and	Physics	2023

AI4Research

Topic	3:	String	Theory	Compactifications,	Calabi-Yau Manifolds	and	Ricci-flat	Metrics

Summary	of	lecture	4

• ML	use	NNs	to	predict	CY	metrics	
• Architecture	ó prediction:	H,	K,	or	g
• Loss	functions	ómath/physics	constraints	(MA	eq,…)
• Open-source	packages	using	ML	libraries
• Trained	NN	is	H,	K,	or	g

Point	generator
ML	model
(neural	net)

Metric	
prediction

Loss	functions Error	measuresModuli

1

Outline:	ML	of	CY	metrics

Tutorial
• Implementations	&	experiments

Main	references
Anderson	et	al	2012.04656,	Douglas	et	al 2012.04797,	Larfors et	al	2205.13408,	Gerdes et	al	2211.12520

Lecture	5:	details
• Direct	learning	of	CY	metrics
Details	&	tech	comments	
Demo
• Advanced	methods
Goals	and	realizations

2

Direct	learning	of	CY	metrics
Details	on	cymetric package

3

Package	structure:	Classes	and	libraries

Any	package	needs	efficient	code.	
• cymetric structured	in	classes:	

1.	Point	generator	
2.	ML	models	
inherit	from	TensorFlow

and helper	functions
• Python	libraries	(numpy,	sympy),	
Mathematica	&	SAGE	routines	
used	for	computations
• Tricks	e.g.	function	decorators,
gradient	tapes	on	input	
• Python	and	Mathematica	interface

4

CY	metric	on	Fermat	quintic (using	cymetric)

Model
learnable parameters �

H Model
learnable parameters ��z gab̄

gab̄

K
�

�z

�

Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.

10

Example: Fermat Quintic

Magdalena Larfors Learning CY metrics 4 May 2022 15 / 32

𝑝 = 𝑥$%+ 𝑥&%+ 𝑥'%+ 𝑥(%+ 𝑥)%

5

CY	metric	on	Fermat	quintic (using	cymetric)

• Input:	point on	CY
Quintic:	10	nodes	=	
𝑅𝑒(𝑥-), 𝐼𝑚 𝑥-
• Output:	metric	prediction	-
9	(or	1)	node

• Experiment:
1.	Generate	points
2.	Create	NN	
3.	Choose	metric	ansatz	
4.	Select	losses
5.	Run	model

6

Building	a	ML	model

• Layer:	takes	input,		gives	output,	as	specified	by	weights

• Neural	net:	collection	of	layers,	with	activation	functions

• Model:	neural	net	+	loss	functions	+	call	backs;	trainable	on	data	

import tensorflow as tf

l=tf.keras.layers.Dense(64,	activation=‘relu’)

nn =	tf.keras.Sequential()
nn.add(tf.keras.Input(shape=(n_in)))	
nn.add(l)
nn.add(tf.keras.layers.Dense(n_out,	use_bias=False))

7

Metric	ansatze in	cymetric
Name Ansatz

Free gpr = gNN

Additive gpr = gFS + gNN

Multiplicative, element-wise gpr = gFS + gFS � gNN

Multiplicative, matrix gpr = gFS + gFS · gNN

�-model gpr = gFS + @@̄�

Table 1: Di↵erent Ansätze for the neural network prediction of the Ricci-flat metric.

together with a set of constraints that the neural network output (that is, the metric) has to satisfy.
Hence, the task is more akin to physics informed self-supervised learning or optimization than classical
’supervision’ with given input-output pairs. We check how well the output meets these constraints
by constructing error measures that encode them. Importantly, given the split of the initial data, the
quality of the output can be assessed on both the training and validation sets. For the validation set,
this check is performed by applying the trained network to the validation data.

From this brief summary, it is clear that designing a NN to perform a certain task involves choosing
a number of hyperparameters, that specify the network’s properties. For fully connected NNs, this
amounts to specifying the width and depth of the network, which activation functions to use, and the
number of batches and epochs. More advanced network components, such as convolutional or dropout
layers (see, for example, Ref. [29] for a recent discussion), require additional hyperparameters. For our
task, previous studies [32–34] have shown that a simple fully connected NN exhibits good performance.
Consequently, we focus on this setting, leaving studies involving more advanced NN architectures for
the future. We build the networks using TensorFlow [40], an ML library with functionalities that suit
our needs. In particular, TensorFlow allows to construct the NNs in a sequential manner, and has
di↵erentiation functions that allow us to compute derivatives with respect to the input data.

4.2 Network architectures

The basic idea underlying machine learning of CY metrics is to use a NN whose associated functions
f✓ represent metrics on the manifold. In other words, the NN input consists of a point p 2 X on the
CY manifold and its output represents a metric g(p) at this point. There are a number of concrete
realizations of this idea. Since CY three-folds X are complex manifolds, their metrics g(p) at each point
p 2 X can be written, relative to a local choice of complex coordinates, as a Hermitian 3 ⇥ 3 matrix.
The first, and most obvious, approach is then to let the NN predict the nine independent entries (three
real entries on the diagonal, and three complex entries on the o↵-diagonal) of this matrix. While this
is possible, it does not take advantage of the mathematical knowledge we have about CY manifolds.
For example, equation (2.2) shows that the CY metric is given by an exact correction to some reference
Kähler metric gFS. Moreover, by constructing CY manifolds as a hypersurfaces or complete intersection
in an ambient space, one can construct the metric gFS explicitly by pullback from the ambient space A.

The cymetric package realizes five choices for how the metric gpr predicted by the NN is related to
the function gNN that the NN actually represents. These possibilities are summarized in Table 1. The
first and most obvious choice, gpr = gNN, has been included for reference but is by no means the
optimal one. A metric is required to be non-singular and this condition can easily be violated for a
randomly initialized or stochastically trained NN. A NN which ’accidentally’ represents a singular or

16

• Different	Ansatze possible	for	
metric	prediction	𝑔45
Encode	more/less	of	math	
knowledge

8

Loss	functions	in	cymetric

near-singular metric can lead to numerical problems. Also, for this choice, the NN has to cope with
the entire numerical variation of the metric gpr. Both problems can be solved, or at least alleviated,
by writing gpr = gFS + correction, and the four other possibilities in Table 1 are of this form. Indeed,
using the non-singular metric gFS as a background makes accidentally generating singular metrics less
likely (and, if there is an actual singularity in the space, the reference FS metric will already have this
feature). Furthermore, under the plausible assumption that the entries of gCY�gFS are typically smaller
than the ones in gCY, a NN dealing with a metric correction involves smaller numbers, likely leading
to enhanced numerical stability. As Table 1 shows, gpr may be defined additively, gpr = gFS + gNN, via
element-wise multiplication, gpr = gFS + gFS � gNN, or via matrix multiplication, gpr = gFS + gFS · gNN.
Finally, using the full information contained in Eq. (2.2), we may set gpr = gFS + @@̄�, where the NN
represents the real function �.

While we have already argued that the free NN is likely ine�cient, there is no telling which of the other
four Ansätze in Table 1 will be most e�cient in learning the Ricci-flat metric on a given CY manifold. For
example, while the �-model automatically gives a Kähler metric, it requires two additional derivatives
on the input, which come at a computational cost. For this reason, the cymetric package makes all
these options available for the user to explore. In the ensuing section, we will compare the performance
of the di↵erent NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the
theorem of Shi↵man and Zelditch, distributed with respect to a measure dA, which is inherited from
the ambient space. This allows to compute any integrals used in the training and validation processes
as weighted sums, following Eqs. (2.25) and (2.26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in
a custom loss function

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LKclass (4.2)

where ↵i are hyperparameters of the NN with default value ↵i = 1.0, and the individual loss contribu-
tions are defined as follows:

• Monge-Ampère loss LMA

The Monge-Ampère loss is defined as

LMA =

����

����1�
1

det gpr
⌦ ^ ⌦̄

����

����
n

, (4.3)

and it ensures that the metric satisfies the Monge-Ampère equation (2.2), as required by the
Calabi–Yau theorem. This loss may be computed with any Ln norm, as indicated by the subscript
n (default is n = 1).5

5
The choice of Ln norm will a↵ect the training of the network. A high n pushes the network to reduce outliers, that is,

large loss function contributions that are localized at a few points. With a low n, the NN will instead strive to reduce the

loss function of all points with equal weight. From our experiments, the default values chosen in cymetric lead to good

performance on the manifolds we have studied.

17

9

• Once	network,	callbacks	and	loss	functions	are	set	up,	call	the	
relevant	TF	class	for	the	model,	then	train	
• e.g.	in	Jupyter notebook,	do

10

Cymetric results

MultFS model	 PhiFS model	

11

Really	small;	stays	Kahler

Can	also	run	all	of	the	above	in	Mathematica

12

Quintic

Compute Points and Metric

To look at the parameters and options of a function, simply call ?<FunctionName> and Options[<-
FunctionName>]

In ["] := ? GeneratePoints
Options[GeneratePoints]

Now we generate some points. We set the output Directory to “Quintic”

In ["] := outDir = FileNameJoin[{NotebookDirectory[], "Quintic"}];
ChangeSetting["Dir", outDir];

In ["] := poly = z05 + z15 + z25 + z35 + z45 + 10 z0 z1 z2 z3 z4;

res = GeneratePoints[poly, {4}, "Points" → 100000, "KahlerModuli" → {1}];

Now we train the NN. We choose the PhiFS model here. (Training can be made faster if one sets
“EvaluateModel”->False).
We also set Verbose to 3 to see some more info during the training process.

In ["] := history = TrainNN["Epochs" → 50, "EvaluateModel" → True, "Verbose" → 3];

We can access the generated points easily

In ["] := pts = GetPoints["all"];
pts〚1〛

Out["]=

{1., -0.0399175 + 0.0879614 ⅈ, 0.654928 - 0.348149 ⅈ,
-0.323408 - 0.404128 ⅈ, -0.351181 - 0.828023 ⅈ}

We can access the weights of the points with respect to the auxiliary measure and the trained CY
metric.
The distribution should become peaked for the CY metric around a single value, since J3 and Ω2
are proportional.

In ["] := weights = GetWeights["all"];
weightsCY = GetCYWeights["all"];

4.Mathematica_integration_example.nb 3

Example	Jupyter and	Mathematica
notebooks	on	
https://github.com/pythoncymetric/cymetric	

Advanced	methods

Goals	and	realizations

13

What	problems	do	we	want	to	solve?

Need	CY	metric	to	compute	physics	(interactions	&	masses)
• Generality	(methods	that	work	on	different	CY)	
• Fast	and	robust	prediction	
• Moduli	dependence	
• Very	accurate	(e.g.	at	stable	points	in	moduli	space)
• Metrics	on	submanifolds
…

14

What	problems	do	we	want	to	solve?

1. Moduli	dependent	metric
Anderson	et	al	2012.04656,	Gerdes et	al	2211.12520,		cyjax

2. Efficiency	and	accuracy
(aka	make	the	most	of	what	we	know:	symmetries	&	Kahler geometry)
Douglas	et	al 2012.04797,	Gerdes et	al	2211.12520, Berglund	et	al	2211.09801,	
holomorphic	&	bihomogeneous NN,	cyjax

3. Generality
point	generator	+	architecture	for	CICYs	and	KS	CYs	
Larfors et	al	2205.13408,	cymetric

4. Learn	metric	of	SU(3)	structure	manifolds
Anderson	et	al	2012.04656	

5. Use	moduli-dependent	metric	to	compute	spectra	etc
e.g.	Swampland	checks	Ashmore-Ruehle 2103.07472,	Ahmed-Ruehle 2304.00027

15

Moduli	dependence

16

Learning	moduli	dependence	of	metric

• The	quintic CY	is	really	a	family	of	CY	manifolds
• 1	Kähler modulus
• 101	complex	structure	moduli
(previously,	we	have	set	most	to	zero	by	hand;	also	required	for	symmetry)

• With	ML	can	learn	the	moduli-dependent	metric
• Challenging,	since	moduli	enters	in	subtle	ways
• Point	sampling	(restricting	to	CY,	computing	weights)
• Loss	functions

17

Example:	learning	moduli	dependence

• Direct	learning	of	𝐻
• Input	cpl str modulus	𝜓
• 1	or	2	hidden layers
• Sigmoid act functions
• Output	𝐻

Anderson	et	al	2012.04656

18

Example:	learning	moduli	dependence

• Learning	H-matrix	with	cyjax
• MA	loss
• Quintic,	2	cpl str moduli	

Hyperparameters

● ● ●

Re

Im

abs

arg

● ● ●

D
en

se
 li

ne
ar

 la
ye

r

layer
sizes

dropout
rates

activation
function

final dense
layer to
real H-

parameters

sigmoid
suppression

product of all
combinations

of powers

● ● ●

Figure 2: Overview of MLP-Hnets and the hyperparameters, in particular the input fea-
tures and the design choices for network, which can be chosen.

3.1 Moduli dependent machine learning

We discuss two examples of moduli dependent machine learning. Readers primarily inter-
ested in the results may skip over some of the more detailed code examples.

3.1.1 Dwork quintic with different basis resolutions

To illustrate the explicit use of our package, we showcase here the steps to set up a neural
network which learns to approximate the metric for the Dwork quintic.

Firstly, we set up the problem by choosing the parametrized family of varieties and a
monomial basis with respect to which we try to learn H.

dwork = cyjax.Dwork(3) # three dimensional variety
degree = 5 # degree of s↵

sections = cyjax.donaldson.MonomialBasisFull(dwork.dim_projective, degree)
Note that this is a sceleton, gathering parts that define the algebraic
metric and exposing various functionality;
it does not contain the H-matrix itself!
This is just like ML models in jax (e.g. flax).
metric = cyjax.donaldson.AlgebraicMetric(dwork, sections)

The aim of our network is to learn a map ! H such that the corresponding algebraic
metric is close to Ricci flat. For illustration, we show a simple network which only depends
on the absolute value of .

class HNet(nn.Module):
basis_size: int
layer_sizes: tuple[int] = (400, 400)
init_fluctuation: float = 1e-3

9
Figure 4: Training behaviour and obtained accuracy for our two moduli example of the
quintic as defined in Equation (11). Training hyperparameters are chosen as in Figure 3,
except with two input moduli and powers from 1 to 6 as well as 10 moduli values per
training batch. The marginalization for the heatmaps was done by taking the average over
respectively all other real moduli parameters.

13

Gerdes et	al	2211.12520

19

Accuracy	and	symmetries

20

Example:	accuracy	and	symmetries	

• The	accuracy	of	the	learned	metric	varies	with	complex	structure
• Metrics	harder	to	learn	at/near	singularities
• Can	check	performance	by	computing	topological	invariants
(will	also	depend	on	point	sampling!)
• Note:	can	compute	such	invariants	with	any	metric,	e.g.	FS
• Embedding/spectral	layers	may	improve	things	

cf. holomorphic/bihom.	NNs

21

Example:	accuracy	and	symmetries	
Pn1
C

Pn2
C

...

PnN
C

↵n1

↵n2

...

↵nN

Re
Im

Re
Im

Re
Im

Re
Im

h
(1)
1

h
(1)
2

...

h
(1)
W1

h
(2)
1

h
(2)
2

...

h
(2)
W2

�

Input layer Spectral layer Fully connected layer

Figure 27: Spectral neural network architecture: Prior to the fully connected neural network

we introduce the spectral layer, taking real and imaginary parts of C⇤-invariant quantities.

Figure 28: Numerical values of (2.24) along the Cefalú pencil. Black points and error bars

showing a 95% confidence interval are associated to Fubini–Study results, while the red and

blue dots correspond to the machine learned metric approximation using fully-connected and

spectral networks, respectively. See Appendix A for the details on integration.

5 Conclusions

In this work we have considered two families of Calabi–Yau manifolds: the Cefalú family

of quartics and the more broadly studied Dwork quintic family. For both of these, we have

developed the algorithms to compute topological quantities derived from their corresponding

Chern characters. This implementation can be easily extended to the whole CICY dataset.

Our algorithms utilize some of the neural network approximation models of the cymetric

package: the so called PhiModel. We also employ our own JAX implementation of this.

– 38 –

Pn1
C

Pn2
C

...

PnN
C

↵n1

↵n2

...

↵nN

Re
Im

Re
Im

Re
Im

Re
Im

h
(1)
1

h
(1)
2

...

h
(1)
W1

h
(2)
1

h
(2)
2

...

h
(2)
W2

�

Input layer Spectral layer Fully connected layer

Figure 27: Spectral neural network architecture: Prior to the fully connected neural network

we introduce the spectral layer, taking real and imaginary parts of C⇤-invariant quantities.

Figure 28: Numerical values of (2.24) along the Cefalú pencil. Black points and error bars

showing a 95% confidence interval are associated to Fubini–Study results, while the red and

blue dots correspond to the machine learned metric approximation using fully-connected and

spectral networks, respectively. See Appendix A for the details on integration.

5 Conclusions

In this work we have considered two families of Calabi–Yau manifolds: the Cefalú family

of quartics and the more broadly studied Dwork quintic family. For both of these, we have

developed the algorithms to compute topological quantities derived from their corresponding

Chern characters. This implementation can be easily extended to the whole CICY dataset.

Our algorithms utilize some of the neural network approximation models of the cymetric

package: the so called PhiModel. We also employ our own JAX implementation of this.

– 38 –

Berglund	et	al	2211.09801

classes as obtained from the metric — as well as the corresponding curvature distributions.

Thereby, we seek to determine which parts of the geometry contribute most significantly to

the various topological quantities. To benchmark these observations, it is useful to compare

the Fubini–Study metric to the machine learned metric.

We also propose a di↵erent neural network model, called spectral networks, for approx-

imating the Ricci-flat metric. We find that the numerical invariants computed using the

spectral networks exhibit higher numerical stability than standard fully-connected networks

which directly use the homogeneous coordinates as input. Furthermore, we briefly discuss

the final loss achieved by these networks and find that for Fermat quartic, the lowest �-loss

is below 10�3, which is at the same level of accuracy as the method described in [25] using

k = 8.

The organization of this paper is as follows. Section 2 describes the deformation fam-

ilies of Calabi–Yau twofolds and threefolds we investigate in this paper and the considered

curvature related features. Section 3 briefly summarizes the numerical methods we apply.

Section 4 considers the machine learned metrics. Certain details of numerical computations

are discussed in the appendices.

2 The testbed models and their curvature

We consider several simple, one parameter deformation families of Calabi–Yau twofolds and

threefolds. In each case, we focus on a few curvature related features for which we compare the

results obtained with a numerical approximation to the Ricci-flat metric, with those obtained

using the pullback of the Fubini–Study metric, as well as with the known exact results.

2.1 The deformation families

The Cefalú pencil: Consider a complex one parameter deformation family of quartics in

P3 [33]:

P3
� X� :=

�
p�(z)= 0

: p�(z) :=

3X

i=0

z
4
i �

�

3

3X

i=0

z
2
i

!2

. (2.1)

The Cefalú hypersurface [33] is the �=1 case. We call the general � deformation, the Cefalú

family (pencil) of quartics. While this deformation family of hypersurfaces provides for a

rather more detailed analytic analysis [34–37], we focus on a few immediate results for the

purpose of comparing with numerical computations of the metric and various metric char-

acteristics on these K3 surfaces. For each �2C, the defining polynomial p�(z) is manifestly

invariant under all permutations of the zi, as well as sign changes zi 7! � zi, separately for

each i = 0, 1, 2, 3. Subject to preserving the holomorphic two-form, ⌦ :=
H (z d3z)

p�(z)
, viz., the

– 3 –

22

Beyond	the	quintic

23

CICY	and	Kreuzer-Skarke CY

• Quintic CY:
• We	can	change	ambient	space,	and	polynomial	eq and	still	get	a	CY
• CICY

• Hypersurfaces	in	toric ambient	spaces	(Kreuzer-Skarke list)

X =
⇥
P4|5

⇤

<latexit sha1_base64="1o+b/t/N7AjTia5KAdncujl1wfg=">AAACCXicbVDLSsNAFJ34rPUVdelmsAiuSiItuhGKblxWsA9IYplMJ+3QyYOZG6HEbt34K25cKOLWP3Dn3zhps9DWAxcO59zLvff4ieAKLOvbWFpeWV1bL22UN7e2d3bNvf22ilNJWYvGIpZdnygmeMRawEGwbiIZCX3BOv7oKvc790wqHke3ME6YF5JBxANOCWipZ+LuhStYAA52QwJD38+ak7safsB1V/LBELyeWbGq1hR4kdgFqaACzZ755fZjmoYsAiqIUo5tJeBlRAKngk3KbqpYQuiIDJijaURCprxs+skEH2ulj4NY6ooAT9XfExkJlRqHvu7Mz1XzXi7+5zkpBOdexqMkBRbR2aIgFRhinMeC+1wyCmKsCaGS61sxHRJJKOjwyjoEe/7lRdI+rdq1av2mVmlcFnGU0CE6QifIRmeoga5RE7UQRY/oGb2iN+PJeDHejY9Z65JRzBygPzA+fwBNvJl2</latexit>

24

New	challenge:	ℎ(&,&) > 1

• Many	Kahler classes
How	do	we	guarantee	we	stay	in	the	same	during	training?

25

New	challenge:	ℎ(&,&) > 1

• Many	Kahler classes
How	do	we	guarantee	we	stay	in	the	same	during	training?

• Loss	function	preserving	 	𝐽	 !
• Take	basis	of	line	bundles	and	keep	track	of	their	slopes	(topological)

Multiple Kähler moduli: preserving the Kähler class

Loss function preserving the Kähler class

Could define a loss function fixing curve, divisor and CY volumes

(but have not; this requires sampling points on curves and divisors).

Instead use that OX (k) (line bundle over X with c1 = [k↵J↵]) has slope

µJ :=

Z

X
J ^ J ^ c1(OX (k)) = �

i

2⇡

Z

X
J ^ J ^ F = d↵��t

↵t�k� ,

The slope is topological, so agrees for metrics in the same Kähler class!

Loss function: for h11-dim basis of line bundles with k1
= (1, 0, 0, ...) etc.

compute

LK-class =
1
h11

Ph11

i=1

����µJFS(Li)�
R
X Jpr ^ Jpr ^ Fi

����
n

Requires more points than contained in mini-batch; NN code more involved.

Cross-check after training: compute volume and line bundle slopes from

intersection numbers, from FS metric and from CY metric.

Magdalena Larfors Learning CY metrics 4 May 2022 18 / 32

26

New	challenge:	ℎ(&,&) > 1

• Many	Kahler classes
How	do	we	guarantee	we	stay	in	the	same	during	training?

Multiple Kähler moduli: preserving the Kähler class

Loss function preserving the Kähler class

Could define a loss function fixing curve, divisor and CY volumes

(but have not; this requires sampling points on curves and divisors).

Instead use that OX (k) (line bundle over X with c1 = [k↵J↵]) has slope

µJ :=

Z

X
J ^ J ^ c1(OX (k)) = �

i

2⇡

Z

X
J ^ J ^ F = d↵��t

↵t�k� ,

The slope is topological, so agrees for metrics in the same Kähler class!

Loss function: for h11-dim basis of line bundles with k1
= (1, 0, 0, ...) etc.

compute

LK-class =
1
h11

Ph11

i=1

����µJFS(Li)�
R
X Jpr ^ Jpr ^ Fi

����
n

Requires more points than contained in mini-batch; NN code more involved.

Cross-check after training: compute volume and line bundle slopes from

intersection numbers, from FS metric and from CY metric.

Magdalena Larfors Learning CY metrics 4 May 2022 18 / 32
27

Example: Bicubic

Given by a homogeneous degree (3,3) polynomial in A = P2
⇥ P2

.

Has 2 Kähler moduli and 83 complex structure moduli.

Choose complex structure moduli, i.e. specify the (3,3) polynomial.

Choose several Kähler moduli paired with line bundles of vanishing slope.

cymetric point generation and training

Generate 100 000 points for each choice of Kähler parameters

Train �-model for 100 epochs (width 64, depth 3, GELU activation functions,

batch size of 64, learning rate of 1/1000).
Training has been carried out on a single CPU in about two hours.

Magdalena Larfors Learning CY metrics 4 May 2022 19 / 32

28

Example:	Bicubic

Figure 2: Bi-cubic training curves for the seven choices of Kähler parameters in Table 2. The last plot
represents the final loss, obtained by averaging over the last 10 epochs, as a function of t2/t1

(orange: LKclass, blue: 4⇥ LMA, both on training data, light-blue: 4⇥ � measure on validation data).

24

case 1 2 3 4 5 6 7

Volint 8.49 4.97 2.93 2.02 6.87 7.59 6.16
VolFS 8.49 4.50 2.94 2.03 6.91 7.58 6.26
error < 1% < 1% < 1% < 1% < 1% < 1% ⇠ 2%
VolCY 8.56 5.03 2.96 2.03 6.86 7.58 6.28
error < 1% ⇠ 1% < 1% < 1% < 1% < 1% ⇠ 2%

Table 3: Exact volume from intersection form (row 2), and volume from numerical integration with gFS

(row 3) and gCY (row 4), for the seven choices of Kähler parameters in Table 2.

5.2.3 Volume computations

From the runs described above we have obtained numerical results for the Ricci-flat CY metric gCY(pi) at
100, 000 points pi on the bi-cubic and for seven choices of Kähler parameters. In addition, the cymetric
package provides the weights wi, the auxiliary weights w̃i and the Fubini-Study metric gFS(pi) at those
points.

As a first check, we would like to compute the CY volume for all seven cases, based on Eq. (2.6). The
exact results are obtained from the intersection formula on the RHS of Eq. (2.6). Alternatively, these
volumes can be computed by integrating over the CY or the FS measure, as in the middle of Eq. (2.6),
and we will evaluate these integrals numerically, as explained in Section 2.7. Explicitly, we compute for
all seven cases

Volint =
1

6
d↵��t

↵
t
�
t
�
, VolFS =

1

N

NX

i=1

w̃i det(gFS(pi)) , VolCY =
1

N

NX

i=1

w̃i det(gCY(pi)) , (5.2)

where we recall that gCY refers to the network’s prediction for the CY metric after the training is
completed. The results are given in Table 3.

The volumes computed with the Fubini-Study metric are in good agreement with the exact results, with
most errors at the level of 1% or below. In this case, the only uncertainty comes from point sampling
(as the Fubini-Study metric is known exactly) so these results confirm that our method for sampling
points works and that 100, 000 points are su�cient.

The more important results in Table 3 are the volumes computed with the Ricci-flat CY metric, given
in the last row. Again, the accuracy is impressive at 1% or less for most cases. Overall, these results
confirm that the Ricci-flat CY metrics obtained are indeed in the prescribed Kähler class – only then
can the volume be expected to come out correctly. We emphasize that obtaining the correct volume has
not been built into the loss function. Rather, the correct Kähler class has been enforced during training
by imposing the Kähler class loss (4.7). Table 3 provides strong evidence that this method does indeed
work.

5.2.4 Slope computations

While the correct slope has been imposed during training it is still worth checking that our numerical
metrics can be used for accurate slope computations. For the seven values of Kähler parameters t(i)

25

Check	volumes	and	slopes	agree	

29

New	challenge:	toric ambient	space

• Requires	new	point	generator
Atill want	points	with	known	distribution
• Idea:
• embed	toric space	into	projective	space	(redundant	description)
• sample	points,	again	using	Shiffman-Zelditch theorem	
• sort	out	some	subtleties	with	redundancies
• re-express	in	toric coordinates	

• Use	functionality	of	Sage	for	toric geometry

30

cymetric: Point generators

Creating a point sample on KS CY 3-fold
Can we relate ambient toric variety A to projective spaces?
=) and so apply Shi↵man–Zelditch theorem, and generalise the CICY algorithm.

Sections s(↵)j of the toric Kähler cone generators J↵ ⇠ coordinates of Pr↵

Use Shi↵man–Zelditch on Pr↵

Express CY 3-fold as non-complete intersection in Â ⇠=
Nh1,1

↵=1 Pr↵

Intersect sample of random points on CY distributed wrt FS measure.

Implemented in cymetric as ToricPointGeneratorMathematica

Magdalena Larfors (Uppsala U.) Machine Learning CY metrics with cymetric 9 December 2022 12 / 40

31

cymetric: Point generators

Creating a point sample on KS CY 3-fold, part 1
Can relate ambient toric variety A to projective spaces
=) can apply Shi↵man–Zelditch theorem, and generalise the CICY algorithm.

Sections of the toric Kähler cone generators J↵ ⇠ coordinates of Pr↵

�↵ : [x0 : x1 : . . .] ! [s(↵)0 : s(↵)1 : . . . : s(↵)r↵]

FS metrics on Pr
�! (non-FS) Kähler metric on A.

Can build random sections

S =
r↵X

j=0

a
(↵)
j s

↵
j

using i.i.d. Gaussian coe�cients a(↵)j ⇠ N (0, 1)

Theorem[Shi↵man and Zelditch]:
Zeros of random sections are distributed according to the FS measure.

Magdalena Larfors (Uppsala U.) Machine Learning CY metrics with cymetric 9 December 2022 13 / 40

32

cymetric: Point generators

Creating a point sample on KS CY 3-fold, part 2

Got map �↵ : [x0 : x1 : . . .] ! [s(↵)0 : s(↵)1 : . . . : s(↵)r↵] and

Know zeros of random sections S =
Pr↵

j=0 a
(↵)
j s

↵
j have good distribution.

Express the CY 3-fold in terms of Kähler cone sections s(↵)j
I Problem 1: too many sections! Problem 2: relations among sections!

First find relations among sections ...
I Groebner basis analysis using Singular (access via Sage)
I Linear algebra routine (faster, requires generic points in section space)

Y

I

s fII =
Y

J

sgJJ ,
Y

I

shII = 1 , sJ =
Y

a

x
Ma,J
a =)

X

I

Ma,IhI = ~0a

... then combine relations + hypersurface eq:

CY 3-fold as non-complete intersection in Â ⇠=
Nh1,1

↵=1 Pr↵ .

Intersect: random point sample on CY distributed wrt FS measure.
Back to slide 12

Magdalena Larfors (Uppsala U.) Machine Learning CY metrics with cymetric 9 December 2022 14 / 40

33

Point generation on KS CY: example

Toric ambient space P1 ,! A ! P3, coordinates x0, ...x5.
Two generators of Kähler cone: J1, J2

CY hypersurface specified by p(x0, ..., x5) = 0 polynomial with 80 terms.

Sections s↵

H
0(J1) = (x1, x4) , H

0(J2) = (x0, x2, x3, x
2
1 x5, x

2
4 x5, x1x4x5) ,

define the morphisms �1,2 into P1 and P5.

Point generation ⇠ 1 hour (generic cpl structure moduli, and t1 = t2 = 1).

Magdalena Larfors (Uppsala U.) Machine Learning CY metrics with cymetric 9 December 2022 15 / 40

34

Example:	CY	in	toric ambient	space
Example: h11 = 2 Kreuzer–Skarke CY

Toric �-model on 50 000 points, 30 epochs

(width 64, depth 3, GELU activation, batch size of 64, learning rate of 1/1000).
Point generation: about 1 hour, Training: about three hours (single CPU).

MA loss and volume (exact 20; more points/epochs needed)

Magdalena Larfors Learning CY metrics 4 May 2022 26 / 32

35

Summary	of	this	lecture

With	available	packages,	we	can	
• Use	ML	to	predict	Ricci-flat	metrics	on	CY	manifolds	
(of	interest	in	e.g.	string	theory)
• Most	work	done	on	the	quintic (with	1-2	cpl moduli)
cyjax,	holomorphic	and	bihomogeneous NNs
• Utilize	symmetries,	Kählerity for	speed	and	accuracy	
• cymetric provides	general	methods	that	
work	on	large	databases	of	CYs
generalize	to	non-Kähler setting

36

Outlook	and	open	problems

• Improving	all	of	the	above!	
• Compute	other	types	of	metrics	(non-Kähler,	SU(3),	G2,	gen	CY,	…)
• Use metric prediction in	computations in	physics &	math

• Compute spectra (swampland program)	
cf		Ashmore 2011.13939,	Ashmore-Ruehle 2103.07472,	Ahmed-Ruehle 2304.00027

• Compute gauge	connections (SUSY	heterotic standard	models)
cf	Anderson	et	al	1004.4399,	1103.3041, Ashmore et	al	2110.12483

• Compute spectrum of bundle-valued diffrential forms
cf	Ashmore He Heyes Ovrut 2305.08901

• Volumes of subcycles

• Here NN	=	complicated function (CY	metric).	
Can we use same	idea in	other areas	of science?

37

