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Lecture	1:	overview	of	
(meta)heuris,cs	and	Gene,c	

Algorithms



• Motivation

• Metaheuristics overview

• Some GA introduction and background

• largeness or otherwise of string (and other) landscapes

• How do they work?

• Why do they work? 

• GA’s on a toy problem: TaxiCab numbers 

• GA in combination with other methods

• GA as search tools in continuous parameter spaces

Overview	…



• String	theories	typically	produce	vast	theory	spaces.	e.g	10^500	or	even	10^(272000)	
Denef,	Douglas;	Ashok,	Douglas;	Denef,	Douglas,	Greene,	Zokowski;	Taylor,	Wang																																							

• Finding	the	“Standard	Model”	typically	requires	solving	a	set	of	DiophanNne	
condiNons	(e.g.	seOng	some	index	to	get	3	generaNons,	anomaly	cancellaNon,	GSO	
condiNons	etc)	

• Such	tasks	are	typically	computaNonally	hard.	e.g.	for	an	NP	complete	problem	
difficulty	(probably)	can	increase	rapidly	with	the	size	of	the	search	space	(but	the	
soluNon	can	be	verified	in	polynomial	Nme).	Halverson,	Ruehle;	Halverson,	Plesser,	Ruehle,	Tian	

• Other	problems	in	physics	also	present	big	data	problems:	e.g.	finding	a	suitable	set	
of	parameters	in	some	BSM	model	that	saNsfies	all	experimental	constraints	

• But	there	are	some	venerable	techniques	that	remain	powerful:	e.g.	Gene$c	
Algorithms		Turing;	Barricelli;	Fraser,	Burnell;	Crosby;	Bremermann;	Holland;	Goldberg;	Jones	

Mo,va,on	…



Metaheuris,cs	overview



• Nature	finds	soluNons	that	would	be	virtually	impossible	for	us	to	solve:	e.g.	

								a)	Virtually	all	biological	processes:	e.g.	find	a	molecule	that	can	transport	and	release	oxygen	

								b)	Find	a	configuraNon	of	proteins	that	can	disable	a	virus	

								b)	Various	other	problems	that	look	like	they	were	solved	by	an	omniscient	being	…	

• 		The	main	theme	is	that	nature	does	not	solve	problems	by	blind	searches,	but	by	building	complex					

soluNons	out	of	simpler	parts	in	various	ways.	

What	is	a	Metaheuris,c?



What	sort	of	problems	are	we	thinking	about?	Assuming	P	=\=	NP	then	…

Many	string	construc,ons	seem	“reducible”	to	genome	assembly!

chess

tetris

GCDgraph isomorphism

0&Xs

Halting problem

many string constructions
genome assembly

knapsack

draughts



Common	meta	heuris,cs	:



Common	meta	heuris,cs	:

Not	obvious	where	quantum	annealing	or	adiaba,c	quantum	compu,ng	belong	here:	

Quantum	annealing?

AdiabaNc	QC?



Gene,c	Algorithms

Basic	idea:	imitate	evolu,onary	principles	of	fitness,	selec,on,	breeding	…



GA	introduc,on	and	background



• Consider	biological	landscapes:	problems	that	were	solved	by	evoluNon	
e.g.	Haemoglobin	molecule.

C2932H4724N828O840S8Fe4

Why?	Let’s	consider	Nature’s	landscapes	…

I	am	not	the	soluNon!!
• #	Choices	of	C,H,…Fe	from	92	elements	…																					!!!	1018334

10747
• Or	should	it	be:	2	legs	of	141	amino	acids,	plus	2	legs	of	146.	

20	amino	acids	means	only	…																??								

• Or	maybe	chances	of	making	human	DNA	=												
<latexit sha1_base64="lPKxAnBqMY3awuyC8P0pN7Ymkm0=">AAAB/XicbVDJSgNBEK1xjXEbl5uXxiB4kNCjQcVT0IvHCGaBZAw9nZ6kSc9Cd48Qh+CvePGgiFf/w5t/Y08SQRMfFDzeq6KqnhcLrjTGX9bc/MLi0nJuJb+6tr6xaW9t11SUSMqqNBKRbHhEMcFDVtVcC9aIJSOBJ1jd619lfv2eScWj8FYPYuYGpBtyn1OijdS2d52L0l16coQx/qlhvm0XcBGPgGaJMyEFmKDStj9bnYgmAQs1FUSppoNj7aZEak4FG+ZbiWIxoX3SZU1DQxIw5aaj64fowCgd5EfSVKjRSP09kZJAqUHgmc6A6J6a9jLxP6+ZaP/cTXkYJ5qFdLzITwTSEcqiQB0uGdViYAihkptbEe0RSag2gWUhONMvz5LacdE5LZZuSoXy5SSOHOzBPhyCA2dQhmuoQBUoPMATvMCr9Wg9W2/W+7h1zprM7MAfWB/fQQKR4g==</latexit>

1 : 43,000,000,000



• GA’s	(based	on	evoluNonary	dynamics)	work	most	effecNvely	when		

								a)	many	criteria	being	applied	at	the	same	Nme		

								b)	correlaNon	between	“goodness	of	fit”	and	“closeness	to	maximum”	

• 			Disadvantage:	by	their	nature	staNsNcal	informaNon	very	hard/impossible	to	get			

Figure 1. The “mogul-field” function.

value of the function. Moreover the three ingredients of selection, crossover and mutation

are crucial3. If done correctly (see below) one can obtain a solution to any desired precision.

It is worth noting some advantages over other techniques. First the function f can have

many maxima, and yet the procedure can still find the global one: the algorithm e↵ectively

samples the whole fitness landscape. Indeed f does not even need to be di↵erentiable, a

fact that strongly suggests the technique could be powerful in the string context, where

getting from vacuum to vacuum often involves topology changing transitions. In addition,

the computational di�culty appears to rise roughly linearly with the length of the genotype

even though the size of the fitness landscape is increasing exponentially. Finally, the process

is very robust. It doesn’t matter for example if we choose to flatten all the chromosomes

of each creature into one long string of data and perform a single crossover for the entire

genotype, or if we perform crossovers on the chromosomes individually.

Many of these properties can be understood (at least intuitively) in terms of schemata

and the schema theorem which was introduced by Holland [2] and which we will describe

shortly. But before we do so, it is worth seeing the procedure at work on a particular

function. Consider finding the maximum of

f(x, y) = 12

✓
cos

3y

2
sin

3x

2
+ x+ y

◆
� x2 � y2. (1.1)

This “mogul-field” function, shown in figure 1, is clearly a hard function for the usual

hill-climbing algorithms to maximize.

As mentioned above, the simplest convention for choosing breeding pairs, and the one

we shall use here, is that they are weighted linearly with f(x, y) (roulette wheel selection):

3Note crossover and mutation can be either/or; they should be present in the population but do not

have to occur simultaneously in the same individuals.

– 4 –
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Example	landscape	task:	find	global	maximum	to	250	decimal	places	without	using	calculus	…	

As such the task of finding a completely viable string vacuum is likely to be what in

computational complexity theory is called an NP-complete problem (where NP refers to

Non-deterministic Polynomial time); that is a problem for which any given solution can be

verified in a time that increases only polynomially with the di�culty, but where finding a

solution by a simple deterministic search algorithm (such as exhaustive scanning) rapidly

becomes computationally infeasible. Indeed a similar point was made in ref.[5], to which

the reader is directed for precise definitions. NP-complete problems are precisely where

heuristic search methods become e↵ective.

The purpose of this paper is to demonstrate the e�cacy of GA’s in finding desirable

string vacuum solutions, by examining a small sub-class of string theories, namely heterotic

strings in the Free Fermionic formulation [6–8]. We will show that they are (many orders

of magnitude) more e�cient than a random search at finding string vacua with particular

desirable properties. This is especially evident when one applies many phenomenological

requirements and the search is multi-modal. For example GA’s do not confer much ad-

vantage if one is just searching for say three generation models. However, in line with

them being e↵ective on NP-complete problems, they come into their own when the search

is statistically very di�cult (when for example only one in 107 models or fewer has the

particular properties of interest).

Given the comments above, one thing we can conclude from the fact that GA’s work so

well is that finding the SM in the string landscape is precisely not like looking for a needle

in a haystack: the landscape has structure and similar models have certain correlations.

We will describe exactly what these correlation are expected to be, but because the number

of possible models is so huge it is not possible for us (even in this fairly restricted set of

models) to check them explicitly. Nevertheless in our view the fact that GA’s work is

evidence that they are there.

1.1 Overview of GA’s: a fake landscape of 10500

Before getting to string theory, it is instructive to create a somewhat artificial optimization

problem that has a similarly large landscape in order to introduce the GA technique and

to make apparent its generic advantages and also its limitations. Suppose that we wish to

find the supremum of some function f(x, y) in the domain x 2 (0, 10), y 2 (0, 10), without

using calculus. One way do this is as follows: consider writing out the possible coordinates

x = a.bcdef...

y = g.hijkl...

where a, b, c... are digits between 0 and 9. In principle one could scan over x and y by

cycling through all possible strings of digits a, b, c... To find the supremum one simply

– 2 –

=) 10500

Holland;	David;	
Reeves,Rowe;	
Jones,Forrest

GA’s	for	searching	a	string	sized	landscape



Define	a	“creature”	and	write	out	its	coordinates	=>	genotype		

Terminology:	Genotype	=	data.	Phenotype	=	f(x,y).		

Figure 1. The “mogul-field” function.
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Work	with	a	popula,on	of	typically	~100	individuals	ini,ally	sprinkled	at	random	

Step	0:	Define	fitness	funcNon,	and	work	out	the	fitness	F	of	each	individual									

(e.g.	F	=	f(x,y)	in	this	case).	

Figure 1. The “mogul-field” function.
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Step	1:	Selec$on:	Select	pairs	for	breeding	such	that	the	most	fit	individuals	can	breed	
several	Nmes,	while	unfit	ones	might	not	breed	at	all:	e.g.	“rouleoe	wheel”	based	on	
ranking	k,	with																													.	Alpha	is	similar	to	a	“learning	rate”	
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Step	2:	breeding:	cut	and	splice	genotypes	of	breeding	pairs	somehow	(not	really	crucial	how)	
to	make	an	enNrely	new	populaNon	of	the	same	size.	

g.hij |

a.bcd |ef
kl



Step	3:	Muta$on	of	a	randomly	chosen	small	percentage	of	digits	(alleles).	

a.bcdefghij...a.bcdef 0gh0ij...

Steps	4	…	infinity:	rinse	and	repeat.	The	populaNon	should	converge	round	soluNons.	



Figure 3. Evolved population of 60 individuals in an “almost discontinuous” extremely choppy

landscape.

Holland argued that schemata are important because selection favours the propagation

of shorter strings of data: small subsections of the genome that confer fitness dominate

first and, once they are shared by the majority of the population, crossover does not a↵ect

them. Indeed this can be observed directly in our previous example: the population tends

to spread along the x and y directions from the solution because in this example the

approximately correct x and y values correspond to only the first few entries of the x and

y chromosomes, which tend to persist even though the entire genome may be disturbed by

crossover.

This can be formalised as follows. Suppose that mutation has just produced in the

population a favourable schema, S. Let n(S, t) be the total number in the population

containing it at time t. We can define the average fitness of all members of the population

containing S, as fS(t) =
P

i2S fi/n(S, t), which is higher than the average fitness of the

population as a whole, f̄ . Assuming that selection is proportional to fitness, f(t), then the

expected number of o↵spring containing S is
P

i2S fi/f̄ . Neglecting crossover and mutation

this would be the expectation of n(S, t+ 1); let us rewrite it as

n(S, t+ 1) = n(S, t)
fS(t)

f̄
. (1.3)

With simple probabilistic arguments one can incorporate the e↵ect of a single-point crossover

destroying S, and mutations at a rate pm per digit to find a lower bound

n(S, t+ 1) � n(S, t)
fS(t)

f̄

✓
1�

d(S)

l � 1

◆
(1� pm)o(S) , (1.4)
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Summary	—	three	crucial	ingredients:	Selec,on	(favours	the	opNmisaNon);	
Breeding/crossover	(propagates	favourable	properNes);	Muta,on	(prevents	
stagnaNon:	evoluNon	proceeds	by	punctuated	equilibria)	
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stagnaNon:	evoluNon	proceeds	by	punctuated	equilibria)	



• Holland	proposed	a	probabilisNc	explanaNon	for	the	efficiency	of	geneNc	algorithms:	based	
on	growth	rate	of	“good”	schema	S	,	e.g.	here	

• Holland	argues	that	iniNal	growth	of	a	good	schema	in	the	populaNon	is	exponenNal	

• SelecNon	pushes	towards	convergence	

• MutaNon	pushes	system	away	from	convergence	

• Some	controversy	in	1990s,	rehabilitated	somewhat																																																																							
by	Poli.	(D.	White,	“An	Overview	of	Schema	Theory”,	1401.2651)			

• Fitness/distance	correlaNon	seems	to	be	important																																																																																			
Jones+Forrest;	Collard,	Gaspar,	Clergue,	Escazu
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In	this	example	the	leading		
digits	of	x	and	y	are	schema	and	get	

propagated	throughout	the	populaNon

Why	do	they	work?



• In	detail	suppose	we	have	n(S,t)	members	of	populaNon	with	schema	S		

• Can	use	simple	probabilisNc	arguments	to	incorporate	the	effect	of	a	single-point	
crossover	destroying	S,	and	mutaNons	at	a	rate	pm		per	allele	to	find	a	lower	bound		
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In	this	example				order	o=	4	
defining	length	d=7

Why	do	they	work?
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• Fitness	—	rank	selecNon	oten	works	best	to	overcome	flat	maxima	

• SelecNon	—	EliNst	selecNon	(copy	fioest	individual	into	new	populaNon	and	kill	
weakest).	Also	various	kinds	of	selecNon:	tournament	selecNon,	rouleoe	wheel,	etc		

• Breeding	—	two	or	more	point	cross-over	to	avoid	edge	effects	

• OpNmise	mutaNon	rate	(See	later)	

• Creep	mutaNon	(on	phenotype)	to	overcome	“Hamming	walls”	e.g.	0.999…	~	1.0000…	

Like	any	machine	learning	technique	you	can	
run	into	problems	unless	you	opNmise	…	

Op,misa,on:

Y.	Akrami,	P.	Scoo,	J.	Edsjo,	J.	Conrad	and	L.	Bergstrom	(2009)



GA	toy	example:	TaxiCab	numbers



Let’s	see	these	principles	at	work	in	an	
example:	taxicab	numbers	…

More	general	problem	becomes	very	“anomaly	cancellaNon	like”:	numbers	that	are	
expressible	as	the	sum	of		n	numbers	to	the	k’th	power	or	m	numbers	to	the	k’th	power:	

<latexit sha1_base64="zkf1bWwnfRT91F0bJu4f4zYgBzU=">AAACE3icbZDLSgMxFIYzXmu9jbp0EyxClVJmpKgboejGZYXeoJchk6Zt2iQzJBlxKH0HN76KGxeKuHXjzrcxnXahrT8Efr5zDifn90NGlXacb2tpeWV1bT21kd7c2t7Ztff2qyqIJCYVHLBA1n2kCKOCVDTVjNRDSRD3Gan5w5tJvXZPpKKBKOs4JC2OeoJ2KUbaIM8+baqIe7TN4UN76FF4BRMwaAsYGzAwoJwd5nhOnHh2xsk7ieCicWcmA2YqefZXsxPgiBOhMUNKNVwn1K0RkppiRsbpZqRIiPAQ9UjDWIE4Ua1RctMYHhvSgd1Amic0TOjviRHiSsXcN50c6b6ar03gf7VGpLuXrREVYaSJwNNF3YhBHcBJQLBDJcGaxcYgLKn5K8R9JBHWJsa0CcGdP3nRVM/y7nm+cFfIFK9ncaTAITgCWeCCC1AEt6AEKgCDR/AMXsGb9WS9WO/Wx7R1yZrNHIA/sj5/ADSanHM=</latexit> mX

i

xk
i =

nX

j

ykj = T (k,m, n)

So	the	smallest	T(3,2,2)	number	is	1729.	Pythagorean	triples	are	T(2,1,2)	numbers.	
Fermat’s	last	theorem	is	there	are	no	T(k,1,2)	numbers	when	k>2.	etc.	And	anomaly	
matching	says	that	there	is	a	T(3,m,n)	number	for	every	global	symmetry!	



How	would	we	set	up	a	problem	like	this?

How	are	we	going	to	map	the	integers?	Binary	encoding	works	best.	Let	each	number	be	
wrioen				

Then	the	a	given	trial	set	of	numbers	is	a	binary	number	with											alleles	…

<latexit sha1_base64="wX0H29JrI83d9+qWQWBy1600OzI=">AAACB3icbVDLSsNAFJ34rPUVdSnIYBFclJKUom6EohuXFewD0hAm00k7dPJgZqINITs3/oobF4q49Rfc+TdO2iy09cDlHs65l5l73IhRIQ3jW1taXlldWy9tlDe3tnd29b39jghjjkkbhyzkPRcJwmhA2pJKRnoRJ8h3Gem64+vc794TLmgY3MkkIraPhgH1KEZSSY5+lPZdD6YPWQYvoTVxzOrEqVcT1ROnbpcdvWLUjCngIjELUgEFWo7+1R+EOPZJIDFDQlimEUk7RVxSzEhW7seCRAiP0ZBYigbIJ8JOp3dk8EQpA+iFXFUg4VT9vZEiX4jEd9Wkj+RIzHu5+J9nxdK7sFMaRLEkAZ495MUMyhDmocAB5QRLliiCMKfqrxCPEEdYqujyEMz5kxdJp14zz2qN20aleVXEUQKH4BicAhOcgya4AS3QBhg8gmfwCt60J+1Fe9c+ZqNLWrFzAP5A+/wB9eKXcg==</latexit>

w = [x1, x2, y1, y2]

<latexit sha1_base64="tBPu2M7M3Bcd5WD0HnZ+SWYstdM=">AAACJHicbVBLSwMxGMzWV62vVY9egkXwsCwbKSqIUPTisYJ9wHYp2TTbhmYfJFmhlPa/ePGvePHgAw9e/C1m2wW1dSAwmZmP5Bs/4Uwqx/k0CkvLK6trxfXSxubW9o65u9eQcSoIrZOYx6LlY0k5i2hdMcVpKxEUhz6nTX9wnfnNeyoki6M7NUyoF+JexAJGsNJSx7yAbcl6IYaX0IWOhSzHsm1kTSDKuWNNfi6ZkYVQZngds+zYzhRwkaCclEGOWsd8a3djkoY0UoRjKV3kJMobYaEY4XRcaqeSJpgMcI+6mkY4pNIbTZccwyOtdGEQC30iBafq74kRDqUchr5Ohlj15byXif95bqqCc2/EoiRVNCKzh4KUQxXDrDHYZYISxYeaYCKY/iskfSwwUbrXki4Bza+8SBonNjq1K7eVcvUqr6MIDsAhOAYInIEquAE1UAcEPIAn8AJejUfj2Xg3PmbRgpHP7IM/ML6+AdH1nEk=</latexit>

� = [0, 1, 0, ..1, 1, 1, 0, ..0, 1, 1, 0, ..1, 0, 1, 1, ..0]

<latexit sha1_base64="xVT33cr+If4lzA+g7WOyVYKt4l4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0J6jHoxWME84BkCbOTTjJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKGnIdb+dtfWNza3twk5xd2//4LB0dNw0caoFNkSsYt0OuEElI2yQJIXtRCMPA4WtYHw381tPqI2Mo0eaJOiHfBjJgRScrNSqdgMkznqlsltx52CrxMtJGXLUe6Wvbj8WaYgRCcWN6XhuQn7GNUmhcFrspgYTLsZ8iB1LIx6i8bP5uVN2bpU+G8TaVkRsrv6eyHhozCQMbGfIaWSWvZn4n9dJaXDjZzJKUsJILBYNUsUoZrPfWV9qFKQmlnChpb2ViRHXXJBNqGhD8JZfXiXNy4p3Vak+VMu12zyOApzCGVyAB9dQg3uoQwMEjOEZXuHNSZwX5935WLSuOfnMCfyB8/kDky2PFQ==</latexit>

4�

The	search	space	is	
<latexit sha1_base64="o2YhmLpBh1DvVak6dk5BdITCdiU=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4Kkkp6rHoxWMF+wFtLJvtpF26yYbdiVBCf4YXD4p49dd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23jEo1hyZXUulOwAxIEUMTBUroJBpYFEhoB+Pbmd9+Am2Eih9wkoAfsWEsQsEZWqlbfcxqvQCQTWm/VHYr7hx0lXg5KZMcjX7pqzdQPI0gRi6ZMV3PTdDPmEbBJUyLvdRAwviYDaFracwiMH42P3lKz60yoKHStmKkc/X3RMYiYyZRYDsjhiOz7M3E/7xuiuG1n4k4SRFivlgUppKiorP/6UBo4CgnljCuhb2V8hHTjKNNqWhD8JZfXiWtasW7rNTua+X6TR5HgZySM3JBPHJF6uSONEiTcKLIM3klbw46L86787FoXXPymRPyB87nD4UJkMU=</latexit>

24�

<latexit sha1_base64="BeMTdePezm0GZ+Eq0LjZSGwAKlg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxgv2ANpTNdtOu3WTD7kQoof/BiwdFvPp/vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTaNSzXiDKal0O6CGSxHzBgqUvJ1oTqNA8lYwup36rSeujVDxA44T7kd0EItQMIpWanaRpuS6V664VXcGsky8nFQgR71X/ur2FUsjHiOT1JiO5yboZ1SjYJJPSt3U8ISyER3wjqUxjbjxs9m1E3JilT4JlbYVI5mpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMxEmKPGbzRWEqCSoyfZ30heYM5dgSyrSwtxI2pJoytAGVbAje4svLpHlW9S6q5/fnldpNHkcRjuAYTsGDS6jBHdShAQwe4Rle4c1Rzovz7nzMWwtOPnMIf+B8/gD+UY7C</latexit>⌧ =

<latexit sha1_base64="V+ekxinA72L6hJ0EfCqIEMmph6Y=">AAACHHicbZDLSgMxFIYz9VbrrerSTbAIbiwztagboejGpYLVQmc6ZNJTDWYuJGeUMsyDuPFV3LhQxI0LwbcxHbtQ6w+BL/85h+T8QSKFRtv+tEpT0zOzc+X5ysLi0vJKdXXtQsep4tDmsYxVJ2AapIigjQIldBIFLAwkXAY3x6P65S0oLeLoHIcJeCG7isRAcIbG8qu7d76gh9TVaehnLkhpLnbey9wAkO04OW30CtdFlvoj6gnqV2t23S5EJ8EZQ42MdepX391+zNMQIuSSad117AS9jCkUXEJecVMNCeM37Aq6BiMWgvayYrmcbhmnTwexMidCWrg/JzIWaj0MA9MZMrzWf2sj879aN8XBgZeJKEkRIv790CCVFGM6Sor2hQKOcmiAcSXMXym/ZopxNHlWTAjO35Un4aJRd/bqzbNmrXU0jqNMNsgm2SYO2SctckJOSZtwck8eyTN5sR6sJ+vVevtuLVnjmXXyS9bHF2HEoFY=</latexit>

wi =
��1X

`=0

2`⌧ i`
<latexit sha1_base64="zH35ABpkntev1+9bnn4hJprA+i8=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBhZREirosunFZwT6giWEyvWmHTiZhZiKUUHDjr7hxoYhbf8Kdf+P0sdDWAxcO59zLvfeEKWdKO863VVhaXlldK66XNja3tnfs3b2mSjJJoUETnsh2SBRwJqChmebQTiWQOOTQCgfXY7/1AFKxRNzpYQp+THqCRYwSbaTAPsCeJlngAef3DHtMYC/HzqnrjXBgl52KMwFeJO6MlNEM9cD+8roJzWIQmnKiVMd1Uu3nRGpGOYxKXqYgJXRAetAxVJAYlJ9PfhjhY6N0cZRIU0Ljifp7IiexUsM4NJ0x0X01743F/7xOpqNLP2cizTQIOl0UZRzrBI8DwV0mgWo+NIRQycytmPaJJFSb2EomBHf+5UXSPKu455XqbbVcu5rFUUSH6AidIBddoBq6QXXUQBQ9omf0it6sJ+vFerc+pq0Fazazj/7A+vwBjCWWLQ==</latexit>

⌧ i` 2 {0, 1}



Aside	for	later	(relevant	to	annealers):	if	we	define		

<latexit sha1_base64="cvcGII5nkpzYXq7jTraZ8wHgk+s=">AAACGnicbVDLTgIxFO3gC/GFunTTSExMjGSGIeqS6MYlJvJIYGbSKR1oaGfGtgMhhO9w46+4caEx7owb/8YCs1DwJPfm5Jx7097jx4xKZZrfRmZldW19I7uZ29re2d3L7x/UZZQITGo4YpFo+kgSRkNSU1Qx0owFQdxnpOH3b6Z+Y0CEpFF4r0YxcTjqhjSgGCkteXlr6JmufTb0LNc+H3qlWbddG7bJQ0IHsC0T7lGIdA1dW3fo5Qtm0ZwBLhMrJQWQourlP9udCCechAozJGXLMmPljJFQFDMyybUTSWKE+6hLWpqGiBPpjGenTeCJVjowiISuUMGZ+ntjjLiUI+7rSY5UTy56U/E/r5Wo4MoZ0zBOFAnx/KEgYVBFcJoT7FBBsGIjTRAWVP8V4h4SCCudZk6HYC2evEzqpaJ1USzflQuV6zSOLDgCx+AUWOASVMAtqIIawOARPINX8GY8GS/Gu/ExH80Y6c4h+APj6wfGO549</latexit>

w3
0 + w3

1 � w3
2 � w3

3 ⌘
X

i

aiw
3
i

<latexit sha1_base64="CdhFjUky7o98IW6Y4NSVddd6UHk=">AAACC3icbVDLTgIxFO34RHyhLt00EBOMgcwAUTcmRDcuMZFHAsykUzrQ0OlM2o6EEPZu/BU3LjTGrT/gzr+xDLNQ8CT35uSce9Pe44aMSmWa38bK6tr6xmZqK729s7u3nzk4bMggEpjUccAC0XKRJIxyUldUMdIKBUG+y0jTHd7M/OYDEZIG/F6NQ9L1UZ9Tj2KktORksh68ggWYHzmmXT4bOZZdLoycUtzLdvnULkEnkzOLZgy4TKyE5ECCmpP56vQCHPmEK8yQlG3LDFV3goSimJFpuhNJEiI8RH3S1pQjn8juJL5lCk+00oNeIHRxBWP198YE+VKOfVdP+kgN5KI3E//z2pHyLrsTysNIEY7nD3kRgyqAs2BgjwqCFRtrgrCg+q8QD5BAWOn40joEa/HkZdIoFa3zYuWukqteJ3GkwDHIgjywwAWogltQA3WAwSN4Bq/gzXgyXox342M+umIkO0fgD4zPH9BQlyA=</latexit>

f = �(w3
0 + w3

1 � w3
2 � w3

3)
2

then	opNmising	the	fitness	of	the	equaNon	part	is	isomorphic	to	minimising	a	sexNc	spin	
Hamiltonian:		

which	can	in	turn	be	reduced	to	an	Ising	model.		

<latexit sha1_base64="61xo/OkNKbxNnEnwBic47392XL0="></latexit>

= �
X

i,j1,j2,j3,k,`1,`2,`3

aiak2
j1+j2+j3+`1+`2+`3⌧i,j1⌧i,j2⌧i,j3⌧k,`1⌧k,`2⌧k,`3



Fitness	funcNon?	Has	to	include	the	equaNons	and	the	constraints	—	here	are	chunks	of	
my	code:	

(lamb	=	500	is	the	constraint	penalty.	Note	we	have	to	hammer	all	the	trivial	soluNons.)

Here	we	see	one	of	the	advantages	of	GAs.	The	procedure	is	very	flexible.	The	GA	part	of	
the	code	operates	on																																																																																																						and	we	just	
need	to	figure	out	the	fitness	f	for	each	binary	code.		i.e.	the	binary	code	could	be	
defining	anything	-	string	theories	-	whatever,	but	everything	from	this	point	onwards	
looks	the	same.

<latexit sha1_base64="tBPu2M7M3Bcd5WD0HnZ+SWYstdM=">AAACJHicbVBLSwMxGMzWV62vVY9egkXwsCwbKSqIUPTisYJ9wHYp2TTbhmYfJFmhlPa/ePGvePHgAw9e/C1m2wW1dSAwmZmP5Bs/4Uwqx/k0CkvLK6trxfXSxubW9o65u9eQcSoIrZOYx6LlY0k5i2hdMcVpKxEUhz6nTX9wnfnNeyoki6M7NUyoF+JexAJGsNJSx7yAbcl6IYaX0IWOhSzHsm1kTSDKuWNNfi6ZkYVQZngds+zYzhRwkaCclEGOWsd8a3djkoY0UoRjKV3kJMobYaEY4XRcaqeSJpgMcI+6mkY4pNIbTZccwyOtdGEQC30iBafq74kRDqUchr5Ohlj15byXif95bqqCc2/EoiRVNCKzh4KUQxXDrDHYZYISxYeaYCKY/iskfSwwUbrXki4Bza+8SBonNjq1K7eVcvUqr6MIDsAhOAYInIEquAE1UAcEPIAn8AJejUfj2Xg3PmbRgpHP7IM/ML6+AdH1nEk=</latexit>

� = [0, 1, 0, ..1, 1, 1, 0, ..0, 1, 1, 0, ..1, 0, 1, 1, ..0]

A	solu$on	to	the	problem	has	f	=	0.	Non-solu$ons	have	f<0.

<latexit sha1_base64="BeMTdePezm0GZ+Eq0LjZSGwAKlg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxgv2ANpTNdtOu3WTD7kQoof/BiwdFvPp/vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTaNSzXiDKal0O6CGSxHzBgqUvJ1oTqNA8lYwup36rSeujVDxA44T7kd0EItQMIpWanaRpuS6V664VXcGsky8nFQgR71X/ur2FUsjHiOT1JiO5yboZ1SjYJJPSt3U8ISyER3wjqUxjbjxs9m1E3JilT4JlbYVI5mpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMxEmKPGbzRWEqCSoyfZ30heYM5dgSyrSwtxI2pJoytAGVbAje4svLpHlW9S6q5/fnldpNHkcRjuAYTsGDS6jBHdShAQwe4Rle4c1Rzovz7nzMWwtOPnMIf+B8/gD+UY7C</latexit>⌧ =



SelecNon.	The	easiest	way	to	operate	is	to	use	ranking	and	simply	keep	the	populaNon	in	
an	array	and	reorder	it	by	fitness.	Then	the	likelihood	of	breeding	is	a	constant	given	by	
the	posiNon	in	the	array:	

This	is	the	equivalent	of	“rank”	selecNon	which	is	a	special	version	of	rouleoe-wheel	sel’n.	



Types	of	selec$on	…

• Rouleoe	wheel	selecNon:	(likelihood	funcNon	of	fitness)	

• Rank	selecNon	(likelihood	based	purely	on	rank)	

• Steady	state	(no	generaNons	-	just	replace	a	few	at	a	Nme)	

• StochasNc	selecNon	(similar	to	rank	selecNon)	

• Tournament	selecNon	(winner	of	tournaments	selected	for	breeding)	

• EliNst	selecNon	

• Boltzmann	selecNon	(similar	to	Metropolis	approach	with	changing	temp.)	

• TruncaNon	selecNon	



Next	mutaNon:

EliNsm	—	we	don’t	mutate	in	the	last	entry.	The	last	entry	is	before	reordering	a	copy	of	
the	fioest	individual	of	the	previous	generaNon.	

OpNmise	mutaNon	rate:	this	is	a	way	
to	see	if	it	is	genuinely	working	as	a	
GA:	SAA	Rizos;	SAA,	NutricaN,	Spannowsky



For	5%	mutaNon	rate	and	a	populaNon	of	150	we	get	…



whereas	for	90%	mutaNon	rate	and	a	populaNon	of	150	(a.k.a.	a	random	scan)	we	get	…



The	importance	of	rank	selec,on	

Oten	doesn’t	make	a	difference	Champlin	

but	here	it	is	crucial:	because	of	degeneracy	of	soluNons	and	discrete	nature	of	the	problem	
there	is	not	a	good	alternaNve	selecNon	probability	based	on	the	fitness	funcNon	…	e.g.	is	
this	soluNon		

After  164  generations, the best fitness =  -1 [14, 30, 23, 26] :sums are  29744  and  29743

35	Nmes	worse	than	this	one	(which	comes	up	a	lot)	?	

After  76  generations, the best fitness =  -35 [14, 22, 21, 16] :sums are  13392  and  13357

[24, 2, 20, 18]  which cubed are 13832  and  13832when	a	nearby	soluNon	is	…	



Combining	GA	with	other	methods



Why	combining?

• GAs	are	very	good	at	exploring	parameters	spaces	with	arbitrarily	complicated	problems	

• Their	iniNal	convergence	rate	is	very	fast	

• The	final	convergence	rate	is	slow	

• This	is	the	effect	of	mutaNon	conNnually	pushing	the	populaNon	out	of	the	“wells”

Because	of	this	in	many	cases,	especially	in	physics,	it	makes	sense	to	combine	GAs	with	

clustering	and	“gradient	descent”	type	techniques.	e.g.	GA+Kmeans+Nelder-Mead.	This	

method	turns	out	to	be	very	useful	for	searching	for	KKLT	like	and	LVS	like	metastable	

string	vacua	where	the	potenNals	are	very	flat	in	some	direcNons.	

Abdussalam,	SAA,	Cicoli,	Quevedo,		Shukla



Example	
• Find	all	the	local	minima	of	this	funcNon:

Abdussalam,	SAA,	Cicoli,	Quevedo,		Shukla

• If	we	construct	and	run	a	GA	over	this	landscape	for	a	while	it	does	this:		



• As	we	suspected	the	convergence	to	the	final	minima	stops	due	to	the	mutaNon.	For	
this	parNcular	kind	of	problem	(where	we	are	not	looking	for	a	discrete	soluNon	in	a	
huge	parameter	space)	the	GA	stops	being	very	powerful	ater	about	10	generaNons.	

• However	it	clearly	gives	useful	informaNon	in	the	early	stages.



• Therefore	run	the	GA	unNl	we	find	clusters,	then	use	a	clustering	algorithm	(K-means	
clustering)	which	groups	the	creatures	into	clusters	from	which	we	make	simplexes.	

• Finally	use	a	Nelder-Mead	descent	algorithm.	(This	is	a	heurisNc	method	btw)

Nelder-Mead:	simplex	moves	like																																					where																		is	the	“worst”	point			

Repeat	several	times	…	



Probing	con,nuous	parameter	spaces



InteresNng	feature	of	GA’s	is	the	fitness	distance	correlaNon,	and	how	it	affects	the	
behaviour	of	the	populaNon	as	it	evolves.	(Checked	with	MulNNest	—	Bayesian	Inference	
—	GA	10-100	x	faster	for	CMSSM)			

For	this	study	use	pMSSM,	23	parameters:	 (Berger,	Gainer,	Heweo,	Rizzo;	Abdussalam,	
Allanach,	Quevedo,	Feroz,	Hobson;	Cahill-Rowley,	
Heweo,	Ismail,	Rizzo)
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Observable Value
h
↵EM(MZ)

MS

i�1

127.950± 0.017

↵S(MZ)
MS 0.1185± 0.0006

mb(GeV) 4.78± 0.06

mt(GeV) 173.1± 0.6

TABLE II. Standard model nuisance parameters, central values and uncertainties [26].

Parameter Range

SM
h
↵EM(MZ)

MS

i�1

[127.882, 128.018]

↵S(MZ)
MS [0.1161, 0.1209]

mb(GeV) [4.54, 5.02]

mt(GeV) [170.1, 175.5]

pMSSM (GUT scale)

M1,M2,M3(GeV) [50,10000]

mHu
,mHd

(GeV) [50,10000]

m
Q̃1,2

m
Q̃3

(GeV) [50,10000]

m
Ũ1,2

m
Ũ3

(GeV) [50,10000]

m
D̃1,2

m
D̃3

(GeV) [50,10000]

m
L̃1,2

m
L̃3

(GeV) [50,10000]

m
Ẽ1,2

m
Ẽ3

(GeV) [50,10000]

At, Ab, A⌧ (TeV) [-10,10]

tan� [2,62]

TABLE III. SM nuisance parameters and pMSSM input parameters defined at the GUT scale.

• Electroweak precision observables (EWPOs): i.e. Z pole observables and MW . The
theoretical prediction for the W boson pole massMW were calculated with SOFTSUSY 4.1.0 [27],
and the e↵ective electroweak mixing angle for leptons sin2 ✓lepte↵ with FeynHiggs 2.13.0 [28–31].
The SM contributions to the total decay width of the Z boson �Z and the Z invisible width
�inv
Z were computed with ZFITTER 6.42 [32, 33] and those of the MSSM with micrOMEGAs

4.3.2 [34]. LEWPO, Eq. (1), contains a Gaussian probability distribution function for each of
these quantities, with central values and experimental and theoretical uncertainties added in
quadrature (see Table IV):

lnLEWPO = lnLMW
+ lnLsin2 ✓lept

eff
+ lnL�Z

+ lnL�inv
Z

. (1)

• Flavour observables from B physics: These include BR(B ! Xs�), BR(B0
s ! µ+µ�)

and BR(Bu!⌧⌫)
BR(Bu!⌧⌫)SM

(Eq. 2). Theoretical predictions were calculated with micrOMEGAs. As in the
previous case, LB includes Gaussian likelihoods for every B observable, with mean values and
uncertainties given in Table IV:

lnLB = lnLBR(B!Xs�) + lnLBR(B0
s
!µ+µ�) + lnL BR(Bu!⌧⌫)

BR(Bu!⌧⌫)SM

. (2)

• Constraints from the Higgs sector: LHiggs accounts for the likelihood of the model predic-
tions for the Higgs masses, branching ratios, production cross sections and total decay widths of
the Higgs sector computed with FeynHiggs 2.13.0. These predictions were tested against exclu-
sion bounds from Higgs searches at the LEP, Tevatron and LHC experiments using HiggsBounds
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s
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• Constraints from the Higgs sector: LHiggs accounts for the likelihood of the model predic-
tions for the Higgs masses, branching ratios, production cross sections and total decay widths of
the Higgs sector computed with FeynHiggs 2.13.0. These predictions were tested against exclu-
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pMSSM;	GAs	as	a	tool	in	parameter	spaces
SAA	w/	Cerdeno	&	Robles



Fitness	funcNon	is	simply	1/likelihood	derived	from	all	experimental	constraints:	it	singles	out	(g-2)	
of	the	muon	as	the	offending	observable.		

Used	the	following: PIKAIA2.0 (Metcalf+Charbonneau), SoftSUSY, FeynHiggs, ZFITTER, MicrOMEGAS, 
HiggSignals, PYTHIA, SModelS, NLL-Fast, Fastlim. 
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observations. dN/dEi (dN̄/dEi) stands for the measured (predicted) flux in the ith energy bin. The
measured flux corresponds to the GCE spectrum from Ref. [69], derived using the Sample Model (see
Section 2.2 of Ref. [69] for a complete description of this model). The vector ✓ refers to the pMSSM
parameters that determine the predicted photon flux.

IV. RESULTS

A. Muon Anomalous Magnetic Moment

In Fig.1, we represent the evolution of the minimum �2 (associated with the maximum fitness) as a
function of the generation number for each of the ten runs. As already mentioned, the maximum fitness
is a monotonically increasing function (due to the elitism), which results in a monotonically decreasing
�2. The evolution proceeds rapidly during the first iterations and stabilises after approximately 100
generations, with no apparent di↵erences among the various runs.

FIG. 1. �2

min vs. number of generations for the ten runs.

The goodness of the best-fit point for each run is shown in Table V, where we also include the
contribution from each observable. The total �2 is of order �2 ⇡ 16 for the ten runs. The greatest
contribution always comes from the muon anomalous magnetic moment (�2

�aSUSY
µ

⇡ 12), while the

predictions for the other observables are in good agreement with the experimental results. For example,
the combination of Higgs observables leads to �2

HiggsSignals ⇡ 1.2. The fit to the invisible Z-width,

which leads to �2
�Z

is consistent with the SM prediction. There is an evident tension between the muon
anomalous magnetic moment and the rest of the observables. A good fit to the latter is only possible
at the expense of a very small supersymmetric contribution to aµ. Table VI shows the corresponding
values of the observables for these best fit points, where we can observe that the resulting �aSUSY

µ is

always two orders of magnitude smaller than the observed �aSUSY
µ = 26.8+6.3

�4.3 ⇥ 10�10. The tension
between the observed value of the Higgs mass and the muon anomalous magnetic moment is well
documented in the literature (see e.g. Ref. [70]).

The top plot of Fig. 2 shows the resulting SUSY spectrum for the particular case of run 3. The
colour code is a visual aid to illustrate the evolution of the GA towards a final result. Blue corresponds
to early generations, green to late ones, and the final generation, 300, is shown in yellow. The same
colour map will be used throughout all the plots in this paper. Note that it is entirely expected
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Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

�
2

⌦
�̃
0
1
h2 0.0067 0.0044 0.0174 0.0002 0.0045 0.0035 0.0096 0.0021 0.0000 0.0020

�
2

HiggsSignals 1.2950 1.2983 1.1452 1.2899 1.2902 1.2914 1.1579 1.2811 1.2804 1.2995

�
2

m
h0

0.1125 0.2174 0.0005 0.0921 0.0879 0.0782 0.3911 0.0656 0.1475 0.1331

�
2

MW
0.1190 0.0350 0.0008 0.1006 0.2500 0.0223 0.0004 0.1642 0.1205 0.2239

�
2

sin2 ✓
lept
eff

0.1538 0.1463 0.1569 0.1575 0.1552 0.1665 0.1639 0.1601 0.1567 0.1470

�
2

�Z
0.0332 0.0121 0.0001 0.0602 0.0388 0.1175 0.0102 0.0451 0.0362 0.0561

�
2

�
inv
Z

2.3054 2.3027 2.2842 2.3056 2.3045 2.3089 2.2998 2.3028 2.3003 2.3024

�
2

BR(B!Xs�)
0.0664 0.0741 0.0596 0.0911 0.0689 0.1050 0.1664 0.0929 0.0717 0.0761

�
2

BR(B0
s
!µ+µ�)

0.1647 0.1818 0.1498 0.1707 0.1617 0.1623 0.1733 0.1888 0.1715 0.1593

�
2

BR(Bu!⌧⌫)
BR(Bu!⌧⌫)SM

0.0140 0.0143 0.0142 0.0143 0.0141 0.0140 0.0142 0.0154 0.0143 0.0140

�
2

LEP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

�
2

LHC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

�
2

�aSUSY
µ

12.2691 12.0273 11.9275 12.2113 12.2873 12.2926 11.8926 11.9721 12.1162 12.1683

�
2

tot 16.5398 16.3138 15.7562 16.4935 16.6631 16.5621 16.2793 16.2904 16.4152 16.5816

TABLE V. Contributions to the �
2 of the best fit points. In blue, we show the leading contribution, which

comes from the fit to the muon anomalous magnetic moment, �aSUSY

µ .

Observable Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

m
h0 (GeV) 124.42 124.15 125.13 124.48 124.49 124.53 123.83 124.57 124.32 124.36

MW (GeV) 80.379 80.382 80.386 80.379 80.376 80.382 80.385 80.378 80.379 80.377

sin
2 ✓lept

e↵
0.23146 0.23146 0.23146 0.23146 0.23146 0.23145 0.23145 0.23146 0.23146 0.23146

�Z(GeV) 2.4947 2.4949 2.4952 2.4946 2.4947 2.4943 2.4950 2.4947 2.4947 2.4946

�
inv

Z
(GeV) 0.5017 0.5017 0.5017 0.5017 0.5017 0.5017 0.5017 0.5017 0.5017 0.5017

BR(B ! Xs�)⇥ 10
4

3.35 3.34 3.35 3.33 3.34 3.32 3.30 3.33 3.34 3.34

BR(B0
s ! µ+µ�

)⇥ 10
9

3.21 3.22 3.19 3.21 3.20 3.21 3.22 3.23 3.21 3.20

BR(Bu!⌧⌫)

BR(Bu!⌧⌫)SM
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

⌦
�̃
0
1
h2

0.1178 0.1180 0.1204 0.1190 0.1180 0.1195 0.1200 0.1194 0.1188 0.1193

�aSUSY
µ ⇥ 10

10
0.0827 0.3472 0.4572 0.1457 0.0063 0.0057 0.4958 0.4081 0.2497 0.1927

TABLE VI. Observable values for the best fit points. In blue, we display the results for �a
SUSY

µ , which show
a large discrepancy with the observed value.

that there will still be unfit individuals in the population exhibiting a large �2. For this reason, a
useful approach is to collate the best fit points from all the di↵erent runs. The bottom plot of Fig. 2
includes the information from all the ten runs, together with the corresponding best fit points. For
convenience, these are also listed in Table VIII. As the population evolves, one can observe clustering
around certain solutions. Whereas the best fit points seem to favour specific ranges of masses in
the lightest neutralino and chargino, they appear more spread in the squark and slepton sector. A
pattern emerges where m�̃0

1
⇡ m�̃±

1
⇡ 2 TeV, the squark masses are generally above 6 TeV (except

for the lightest stop, for which mt̃1 ⇡ 2� 3 TeV), and slepton masses show a wide range of variation
2� 10 TeV. For completeness, the pMSSM input parameters (19 soft supersymmetry-breaking terms
and four nuisance parameters) for the best fit points of each run are listed in Table VII.
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fitness). In detail, (for each model) first the input parameters were evolved from the GUT scale down
to the electro-weak (EW) scale to compute the SUSY spectrum, branching ratios and decay widths
using SOFTSUSY. Then, the Higgs sector was evaluated with FeynHiggs. Next, the DM relic abundance
and the aforementioned observables were calculated as previously outlined. These data constitute the
phenotype of each individual. Finally, the predictions were combined into a likelihood as in Eq. (5)
to compute a total chi-squared and hence the fitness.

On a practical level, the value of the fitness function of each individual in a given population,
which as mentioned in the Introduction is by far the most computationally intensive step of a GA,
is of course independent for each individual, providing inherent parallelism and an opportunity to
improve the performance of the heuristic search. To take advantage of this, we used the public parallel
version of PIKAIA 1.2 [64], which implements the Message Passing Interface (MPI) for a more e�cient
exploration of parameter space. Every package for the calculation of physical observables was modified
accordingly and properly interfaced to PIKAIA to avoid data loss and disruption.

The number of individuals in a population, Npop, was fixed to be 100. We explored a wide range
of possibilities for the number of generations Ngen, and determined that for Ngen > 300, there was no
significant improvement in the minimum �2. In other words, Ngen = 300 generations, and hence only
Npop⇥Ngen = 3⇥104 evaluations of the fitness function, were su�cient to achieve a good convergence
of the total �2. (The number of times a model has to be evaluated is one of the best indicators of
the overall e�ciency gain: as mentioned earlier a useful point of comparison is the most rudimentary
approach, namely a flat scan with just 2 points in each of the 23 dimensions, which would require 107

evaluations.)
The complete set of selected GA parameters is shown in Table I. Overall we performed 10 runs of

this pMSSM-GA implementation, varying only the initial seed of the random number generator. The
results did not change significantly between runs, or for longer runs.

A. Muon Anomalous Magnetic Moment

The measured muon anomalous magnetic moment [65] shows a 3.5� deviation from the SM value,
which could potentially be explained by supersymmetric contributions. The value of �aSUSY

µ for the
MSSM was computed with micrOMEGAs, and the latest experimental average used from Ref. [26] (see
Table IV) in a Gaussian probability distribution function, L�aSUSY

µ
. Thus, the joint likelihood function

reads,

lnLJoint = lnLEWPO + lnLB + lnLHiggs + lnLLEP + lnLLHC + lnL⌦DMh2 + lnL�aSUSY
µ

. (5)

B. The Galactic Center Excess

For the later treatment of the Galactic Center Excess (GCE), we incorporated it into the joint
likelihood as

lnLJoint = lnLEW + lnLB + lnLHiggs + lnLLEP + lnLLHC + lnL⌦DMh2 + lnLGCE . (6)

Note that here we do not now take into account the likelihood from �aSUSY
µ .

To evaluate �2
GCE, the procedure outlined in Ref. [66] was followed. That is we convoluted the

di↵erential photon spectrum of a given point of the parameter space with the energy resolution of the
LAT instrument. We used the P8REP-SOURCE-V6 total (front and back) resolution of the reconstructed
incoming photon energy as a function of the energy for normally incident photons. Then �2

GCE was
calculated as follows [67]:

�2
GCE =

X

ij

✓
dN̄

dEi
(✓)� dN

dEi

◆
⌃�1

ij

✓
dN̄

dEj
(✓)� dN

dEj

◆
, (7)

where ⌃ij is the covariance matrix containing the statistical errors and the di↵use model and resid-
ual systematics obtained in Ref. [68] using the reprocessed Fermi-LAT Pass 8 data from 6.5 yr of



InformaNon	about	the	structure	can	be	inferred	from	the	“flow”	(assuming	fitness	distance	
correlaNon).	e.g.	the	W	mass	is	easy	to	fit	and	not	constraining,	DM	is	hard	and	
constraining,	g-2	is	impossible.			
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FIG. 9. Electroweak observables: Left: �
2 vs. MW . Right: �

2 vs. sin2
✓
lept

e↵
. Left: �

2 vs. �Z . Right: �
2 vs.

�inv

Z . The solid black line corresponds to the mean value of each observable, and the shaded areas to the 1�
(grey) and 2� (light grey) regions around that value according to Table IV.

FIG. 10. Left: �2 vs. �aSUSY

µ . The solid black line corresponds to the �a
SUSY

µ mean value, see Table IV. The
1� and 2� regions (light grey) around the mean value are shaded in grey and light grey, respectively. Right:
�
2 vs. �2

�aSUSY
µ

.
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FIG. 3. Left: �
2 vs. ⌦

�̃
0
1
h
2. The solid black line corresponds to the ⌦DMh

2 mean value, see Table IV.
As a reference, we show the 1� and 2� regions around the mean value in grey and light grey, respectively.
Right: �

2 vs. �
2

⌦
�̃
0
1
h2 . The colour map denotes the evolution from number from generation 0 up to 300, the

initial guesses (Ngen = 0) are depicted in black and the final generation (Ngen = 300) in yellow. The red star
corresponds to the best fit.

FIG. 4. �2

⌦
�̃
0
1
h2 vs. the Higgsino (left) and wino (right) component of the lightest neutralino.

A wino-like neutralino is not particularly easy to find through direct detection techniques (as the
elastic scattering cross section with nuclei is generally dominated by Higgs exchange diagrams which
are enhanced by the Higgsino component). In Fig. 5, we show the predicted contribution to the
spin-independent (SI) and spin-dependent (SD) scattering cross section for all the di↵erent runs and
in Table IX we include the values obtained for the best fit points. Note that these plots only include
points with ⌦�̃0

1
h2  ⌦DMh2 + 1�: solutions with ⌦�̃0

1
h2 < ⌦DMh2 have been weighted by ⇠ =

min[1,⌦�̃0
1
h2/⌦DMh2] as indicated in each panel. It is interesting to observe that all the best fit

points are nicely grouped around the same solution, with �SI
�̃0
1p

⇡ 10�11 pb and m�̃0
1
⇡ 2 TeV. This

is just below the projected sensitivity of LZ and potentially within the reach of the planned Darwin
experiment. Notice, however, that it is extremely close to the region where the background due to
coherent neutrino scattering becomes important. The spin-dependent contribution is negligible for
these points. Regarding indirect detection, the predicted thermal averaged annihilation cross section
at zero velocity is also shown in this table. It is of the order of h�vi0 ⇡ 10�26 cm3s�1, just within the
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You	can	get	“predicNons”	from	the	final	generaNons.	e.g.	in	this	case	the	spectrum:	

12

FIG. 2. (Top) SUSY spectrum for all the generations in run 3. Yellow represents the results for the last
generation and the red line corresponds to the best fit point. (Bottom) The same, but including the results
for the ten runs.



Note	the	“large	dimensionality	problem”:	in	19	dimensions,	slices	give	a	misleading	
representaNon	of	the	structure	

In	19D	this	ball	occupies	only	10^(-7)	of	the	volume	of	the	cube!		



Slices	give	a	good	idea	of	the	flow,	but	non-linear	(Sammon)	mapping	gives	a	beoer	image	
of	the	clustering:		



Summary

•GAs	are	one	of	the	most	effecNve	(meta)heurisNc	search	methods	

•They	excel	at	problems	in	difficult	search	spaces	where	there	are	many	
local	opNma		

•They	have	three	components:	selecNon,	breeding,	mutaNon		

•Their	final	convergence	tends	to	slow	down	—	in	combinaNon	with	other	
heurisNc	methods	they	can	be	even	more	effecNve.		

•They	have	probably	sNll	untapped	potenNal	in	BSM	physics	



• Minimising	a	con$nuous	func$on	

• Knapsack	problem	

• 	…	

First	GA	tutorial	problem: Tutor:	Thomas	Harvey	

We	have	provided	an	example	Jupyter	notebook	showcasing	the	applicaNon	of	GA	to	taxicab	numbers.	
You	can	access	the	notebook	at	hops://www.Nnyurl.com/ga-ox-taxi.	Requires	Jupyter-notebook	and	
python.	Please	refer	to	this	notebook	for	the	problem-solving	exercises.		



Lecture	2:	(Quantum)	Annealing	and	
Quantum	Adiaba,c	Compu,ng	



1. Quantum	annealers	background	

2. ReducNon	

3. ApplicaNon:	Completely	Quantum	Neural	Networks	

4. ConNnuous	parameters:	simulaNng	QFT	

5. AdiabaNc	Quantum	CompuNng	Versus	Quantum	Annealers	and	QIBO

Overview



Background



Two di↵erent approaches to quantum computing

‘Gate’ based quantum computing

• Discrete quantum operations
on qubits

• Construct ‘circuits’ out of
these gates

• Detect and correct errors to
reduce e↵ect of noise

| ABCi

|0ip1

|0ip2

|0ip3

|0ip4

E

Continuous time

• Map problems directly to
physical system

• Allow quantum physics to
help search solution space

• Low temperature
environment could help
solve problems
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• Discrete quantum operations
on qubits

• Construct ‘circuits’ out of
these gates

• Detect and correct errors to
reduce e↵ect of noise

| ABCi

|0ip1

|0ip2

|0ip3

|0ip4

E

Continuous time

• Map problems directly to
physical system

• Allow quantum physics to
help search solution space

• Low temperature
environment could help
solve problems

Type Discrete Gate Quantum 
Annealer

Property
Universal (any 

quantum algorithm 
can be expressed)

Not universal — 
certain quantum 

systems

How? IBM - Qiskit 
~50 Qubits

DWave - LEAP 
~5000 Qubits

What?

Background:	Quantum	compuNng	has	a	long	and	disNnguished		
history	but	is	only	now	becoming	pracNcable.	(Feynman	’81,		Zalka	'96,	

Jordan,	Lee,	Preskill	…	see	Preskill	1811.10085	for	review).	Two	types	of	
Quantum	Computer:



•Both	types	operate	on	the	Bloch	sphere:	basically	measuring																										
where																																										are	the	possible	eigenvector	eqns		

•	Each	i	represents	a	single	qubit		

•A	discrete	quantum	gate	system	is	good	for	looking	at	things	like	
entanglement,	Bell’s	inequality	etc.	Also	discrete	problems,	cryptographical	
problems,	Shor’s,	Grover’s	algorithms,	etc.	

•A	quantum	annealer	is	good	for	looking	at	network	problems	but	from	our	
perspecNve	it	is	also	a	more	natural	tool	for	thinking	about	field	theory.	It	is	
based	on	the	general	transverse	field	Ising	model	(Kadowaki,	Nishimori):

Why we focus on continuous time

|0i

|1i

| i =
1p
2
(|0i + |1i)

Classical bits: fundamentally discrete ! 0 or 1, nothing in between

Lends itself to a discrete digital description: bit flips either happen
or they don’t

Quantum bits: continuous rotations are possible

Breaking operations up into discrete chunks is not natural ! an
(exact) bit flip is just as hard as any other rotation

Bonus feature: applied gate based algorithms similar to continuous time
operations ! cont. time algorithms have implications for gate based

II. SET-UP OF A SIMPLE PROBLEM

A useful potential to focus on is the following quartic one:

V (�) =
�

8
(�2 � v2)2 +

✏

2v
(�� v) . (1)

The potential is shown in Fig.1. On the left we show the “thick-wall” regime where ✏ is large. This limit is when the
barrier is close to disappearing (or has disappeared altogether) and the walls become comparable in size to the bubble
itself. For numerics we choose v = � = 1 and ✏ = 0.3. The opposite “thin-wall” regime (for which we choose ✏ = 0.01)
is the limit in which ✏ is small and is approximately the difference in vacuum energy density between the false and
true minima.

We are interested in the situation where the system starts in the false vacuum, and our objective is to study the
rate per unit volume of tunnelling out of it. The analytic calculation of this rate is a classic problem, but it is worth
briefly recapping it in order to recast the result in a form that can easily be compared with the results from a quantum
simulation. It proceeds as follows.

First let us remove the extraneous constant term by working with U(�) = V (�) � V (�+), which has U(�+) = 0.
Using the well-known technique of [42–45], the bubble profile is given by finding a “bounce solution” to the following
differential equation:

d2�

d⇢2
+

c

⇢

d�

d⇢
= U 0 , (2)

where in four dimensions, c takes the value 2 or 3 for a finite temperature O(3) symmetric bubble, or a purely quantum
tunnelling O(4) symmetric instanton, respectively. The required “bounce” is subject to the boundary condition that
d�/d⇢ = 0 as ⇢ ! 0,1, which determines the starting value �(0), which is the field-value at the centre of the radially
symmetric bubble or instanton (also called the escape-point). The resulting �(⇢) profile for our particular choice of
parameters is shown in Fig. 2.

Once such a solution is determined, the tunnelling rate per unit volume can be estimated from its classical action:

�4 = A4 e
�S4[�] ,

�3 = A3 Te
�S3[�]/T , (3)

respectively. The quantum determinant prefactors A4, A3 are notoriously difficult to calculate, but for our purposes
it will be sufficient to focus on the influence of the classical action.

The expressions for the action can be expressed in simple analytic terms in the two limits. In the thick wall limit
the bounce action can be accurately approximated by expanding around the value ✏ = ✏0, above which the barrier
disappears (i.e. when the discriminant vanishes), which gives a cubic potential about the false vacuum. This critical
value corresponds to ✏0 = 2�a4/3

p
3. Defining ⇢ =

p
2/3(1� ✏/✏0), the location of the minima is

�+

v
=

1 + ⇢p
3

+O(⇢2) ,

��
v

= � 2p
3
+O(⇢2) . (4)

Then following the rescaling procedure of [45], the tunnelling actions for the O(4) and O(3) symmetric solutions can
be written in terms of standard actions:

S4 =
3⇢

�
S0
4 ; S0

4 = 91

S3 =
3a⇢3/2

�1/2
S0
3 ; S0

3 = 19.4 (5)

The thin-wall regime is somewhat easier to study numerically, and semi-analytically the actions can be expressed in
terms of the action S1 for the one-dimensional c = 0 problem 1:

S4 =
27⇡2S4

1

2✏3
; S3 =

16⇡3S3
1

3✏2
. (6)

1 This is also the energy of the physical “domain wall” solution, but for reasons that will become apparent it would be confusing to use
this terminology.

3

These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,

S1 = 2⇡2

Z 1

0
d⇢

1

2
�̇2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adiabatic theorem of quantum mechanics, which implies that a
physical system will remain in the ground state if a given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum annealer is that of a general Ising model, in addition to a
time-dependent transverse field:

HQA(t) =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i +�(t)

X

i

�X
i , (9)

where �Z
i =

✓
1 0
0 �1

◆
(�Z |0i = |0i, �Z |1i = �|1i) is the Pauli Z operator, with the subscript indicating which spin

it acts upon, and �X is its friend pointing in the X-direction. The gradual decrease of �(t) ! 0 from a large value
should drive the system into the ground state of the time-independent part of the Hamiltonian, and this is where we
will put the field theory:

H =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i . (10)

It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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•It	looks	like	this	with	(restricted	couplings	-	DWave	2000Q)…			
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•What	does	the	“anneal”	mean?

Actually solving problems (physics I won’t talk about)
Quantum Hamiltonians generalize classical Monte Carlo algorithms
ex. simulated annealing
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value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify
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It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
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These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,
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which should yield a solution of the form shown in Fig.2b.
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Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
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can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
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between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify
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It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
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lem to be solved (as bitstring energies) more on next slides
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results.
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tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
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a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify
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It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
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induces	bit-hopping	in	the	Hamming/Hilbert	space	

The	idea	is	to	dial	this	parameter	to	land	in	the	global	minimum	(i.e.	the	soluNon)	
of	some	“problem	space”	described	by	J,h:	



More	specifically:	thermal	annealing	uses	Metropolis	algorithm:	accept	
random													flips	with	probability		
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Quantum	tunnelling	in	QFT	happens	with	probability																																															
so	by	contrast	it	can	be	opera,ve	for	tall	barriers	if	they	are	
made	thin	
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Applied Quantum computing

How do we use real, imperfect, quantum machines to solve
problems people care about?

1. Only use them for what they are good at do the rest
classically hybrid quantum/classical algorithms

X
E

state
successful
tunnelling

failed
tunnelling

true 
solution

smooth
region

rough
region

classical algorithm

QA �nds wide
minima

2. Find the right problems ! need to be the right shape and size
for near term the machines... and still be problems people
care about

But first... some background on continuous time QC

Thermal	(classical)	and	Quantum	Annealing	are	complementary:



•Example	1:	how	many	verNces	on	a	graph	can	we	colour	so	that	none	touch?	NP-hard	problem.

Example of Ising problem mapping ?

Have:
I Binary variables Zi 2 {�1, 1}
I Minimisation over Hamiltonian made of single and pairwise

terms HIsing =
P

i hiZi +
P

j>i Ji ,jZiZj

Want:
I Maximum independent set: how many vertexes on a graph

can we colour so none touch? ! NP hard

Method:

1. For an edge between vertex i and j add Zi + Zj + ZiZj !
penalizes colouring (Z = 1) adacent vertexes

2. Add ��Zi to reward coloured vertexes (0 < � < 1)
?
Taken from the notes of a physics level 3 computing project I wrote, full

notes at: http://nicholas-chancellor.me/QOpt project final.pdf

•Let	non-coloured	verNces	have																								and	coloured	ones	have																				.
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•Add	a	reward	for	every	coloured	vertex,	and	for	each	link	between	verNces	i,j	we	add	a	
penalty	if	there	are	two	+1	eigenvalues:
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Encoding	network	problems	in	a	general	Ising	model



•Example	2:	N^2	students	are	to	sit	an	exam	in	a	square	room	with	NxN	desks	1.5m	apart.	half	
the	students	(A)	have	a	virus	while	half	of	them	(B)	do	not.	How	can	they	be	arranged	to	
minimise	the	number	of	ill	students	that	are	less	than	2m	from	healthy	students?	

•Call	the	eigenvalue	of	A	==	+1	and	that	of	B	==	-1.	That	is	if	I	measure								at	a	point	to	have	
value	+1	then	I	conclude	that	I	should	put	an	ill	person	there,	and	vice-versa.		

•There	are	N^2		spins																arranged	in	rows	and	columns.	I	do	not	care	if	A>=<A	or	B>=<B,	
but	if	A>=<B	then	I	put	a	penalty	of	+2	on	the	Hamiltonian	(ferromagneNc	coupling).	So	…		

•Finally	I	need	to	apply	the	constraint	that	#A	=	#B:	
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These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,
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�̇2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adiabatic theorem of quantum mechanics, which implies that a
physical system will remain in the ground state if a given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify

�(⇢) () lim
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The form of the Hamiltonian available to a quantum annealer is that of a general Ising model, in addition to a
time-dependent transverse field:
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it acts upon, and �X is its friend pointing in the X-direction. The gradual decrease of �(t) ! 0 from a large value
should drive the system into the ground state of the time-independent part of the Hamiltonian, and this is where we
will put the field theory:

H =
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It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].

4

where in the present context one might for example take a fiducial value �0 ⇡ �v and ⇠ = 2v/N , with M⌫ = �⇢.
Thus our Ising interaction Jij is an (MN)⇥ (MN) matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to the Hamiltonian

H(chain)
` = �⇤

0

@
N�1X

j=1

�Z
`N+j�

Z
`N+j+1 � �Z

`N+1 + �Z
`N+N

1

A . (12)

As shown in [47], taking ⇤ to be much larger than every other energy scale in the overall Hamiltonian, these terms
will constrain the system to remain in the ground subspace of the Hamiltonian, where exactly one spin position, ↵`

say, is frustrated for each `. These states are of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is represented by the position ↵` of the frustrated domain wall. Conversely
the field value at the `’th position can be found by making the measurement

�(⇢`) =
1

2

N�1X

j=1

(�0 + j⇠) h�Z
`N+j+1 � �Z

`N+ji , (14)

which only receives a contribution from frustrated spin position with j = ↵`. For later, it is useful to note that this
is equivalent to

�(⇢`) = �0 +
N⇠

2
� ⇠

2

NX

j=1

h�Z
`N+ji . (15)

In terms of Jij and hi, adding the full set of Ising-chain Hamiltonians given by Eq.(12) corresponds to

J (chain)
`N+i,mN+j = �⇤

2
�`m

0

BBBBBBBB@

0 1
1 0 1

1 0

. . .
0 1
1 0

1

CCCCCCCCA

ij

, (16)

and an h that is independent of `,

h(chain)
`N+j = ⇤ (�j1 � �jN ) . (17)

This separates the system of spins into blocks of size N , each of which represents a field value.
Moving on to H(QFT ), the potential is somewhat easier to deal with than the kinetic terms, because it can be

encoded entirely in hi. This is only to be expected because the �` are independent of each other in the potential
which gives entirely localised contributions to the Hamiltonian. The value of U(�(⇢`)) at each point follows directly
from Eq.(14):

U(�(⇢`)) =
1

2

N�1X

j=1

U(�0 + j⇠) h�Z
`N+j+1 � �Z

`N+ji . (18)

This yields an additional contribution to the h which is also independent of `: that is for all ` we have

h(QFT)
N`+j =

(
⌫
2 (U(�0 + (j � 1)⇠)� U(�0 + j⇠)) ; j < N
⌫
2U(�0 + (N � 1)⇠) ; j = N

(19)

It can also be convenient to write this in terms of U derivatives as

h(QFT)
N`+j =

(
� ⌫⇠

2 U 0(�0 + j⇠) ; j < N
⌫
2U(�0 + (N � 1)⇠) ; j = N ,

(20)

5



•Example	2	done	with	classical	thermal	annealing	using	the	Metropolis	algorithm.	
Note	this	represents	a	search	over																																		configuraNons:		

•Importantly	the	constraint	hamiltonian	cannot	be	too	big	otherwise	the	hills	are	too	
high	and	it	freezes	too	early.	This	makes	the	process	require	a	(polynomial	sized)	bit	of		
“thermal	tuning”.
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N
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!m=1

N
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ij=1

(

δ!m(δ(i+1)j + δ(i−1)j) + δij(δ(!+1)m + δ(!−1)m)
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∑
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2^100	~	10^30	
possibili,es!

System	is	
ferromagne,c	with	
constraint	…



•In	the	metropolis	algorithm	the	cooling	Nme	can	increase	exponenNally	with	the	size	

•This	can	be	done	in	microseconds	on	a	quantum	annealer	

•	To	do	this	we	simply	fill	h	and	J	and	call	the	quantum	annealer	from	python		

•However	the	architecture	(connecNvity	of	J,h)	is	limited,	so	it	needs	to	be	“embedded”	

•“answer”	is	a	list	of	[+1,-1,+1,+1	…..]	spins	ordered	by	energy:



TaxiCabs	and	reduc,on



Suppose	we	want	to	solve	the	TaxiCab	problem	—	we	could	contemplate	doing	

where																																					are	the	binaries	from	each	spin	(called	the	QUBO	Hamiltonian).	

The	numbers	should	of	course	not	repeat	so							

Encoding	the	problem:

where

and	each	integer	is	binary	encoded	as	e.g.	

<latexit sha1_base64="6m1BHTQ71YTzh7WcGOXD9Rpyd68=">AAACGXicbZA9SwNBEIb3/DZ+RS1tFoNgFe5CUBtBtLGMYKKQS465zSQu7n2wOyeEI3/Dxr9iY6GIpVb+G/diCo2+sPDsOzPszhumShpy3U9nZnZufmFxabm0srq2vlHe3GqZJNMCmyJRib4OwaCSMTZJksLrVCNEocKr8PasqF/doTYyiS9pmGIngkEs+1IAWSsou8CPuW+yKMh9VMpe3FE390Mk4CNe645NnyALCuoCD8oVt+qOxf+CN4EKm6gRlN/9XiKyCGMSCoxpe25KnRw0SaFwVPIzgymIWxhg22IMEZpOPt5sxPes0+P9RNsTEx+7PydyiIwZRqHtjIBuzHStMP+rtTPqH3VyGacZYSy+H+pnilPCi5h4T2oUpIYWQGhp/8rFDWgQZMMs2RC86ZX/QqtW9Q6q9Yt65eR0EscS22G7bJ957JCdsHPWYE0m2D17ZM/sxXlwnpxX5+27dcaZzGyzX3I+vgD9qZ8U</latexit>

a =
�X

`=0

2`⌧a`



But	imagine	subsNtuNng	all	these	integers	into	the	H	in	the	loss	funcNon,	we	get	a	giganNc	sexNc	
in	sigma’s,	and	the	Ising	model	can	only	be	quadraNc.	We	can	get	around	this	by	adding	to	the	
Hamiltonian	auxilliary	(ancilla)	spins	that	represent	pairs	of	spins.		

Thus	consider	the	Hamiltonian		

It	has	a	minimum	at		Q=0			where																															,		so	we	can	replace	the	pair																																																			
with	a	single	qubit														everywhere	in	the	rest	of	the	Hamiltonian,	reducing	the	degree	by	one,	
as	long	as	we	add	Q	to	H,	the	H’s	are	guaranteed	to	have	the	same	vacuum.

Reduc,on:

<latexit sha1_base64="MOEzN9P7BRdu8c3fPj3akefRoLQ="></latexit>

⌧1 = 0, ⌧2 = 0, =) Q = 3⇤⌧12 =) ⌧12 = 0

⌧1 = 1, ⌧2 = 0, =) Q = ⇤⌧12 =) ⌧12 = 0

⌧1 = 0, ⌧2 = 1, =) Q = ⇤⌧12 =) ⌧12 = 0

⌧1 = 1, ⌧2 = 1, =) Q = ⇤(1� ⌧12) =) ⌧12 = 1



•Thus	we	go	through	reducing	the	sexNc	down	to	a	quarNc	and	adding	a	Q	for	every	
pair:	repeat	eventually	reducing	to	a	quadraNc	(happily	this	can	be	automated):

•The	Ising	model	looks	
kind	of	ugly	…	



Nevertheless	—	Results:

•Find	the	early	TaxiCab	numbers.	Plus	e.g.	equal	sums	of	3	quarNcs	…		

•Thus	we	go	through	reducing	the	sexNc	down	to	a	quarNc	and	adding	a	Q	for	every	
pair:	repeat	eventually	reducing	to	a	quadraNc	(happily	this	can	be	automated):



•Find	the	early	TaxiCab	numbers.	Equal	sums	of	8	cubics	…		

•smallest	of	these	is	a	soluNon	in	a	search	space	of	

Nevertheless	—	Results:

•Thus	we	go	through	reducing	the	sexNc	down	to	a	quarNc	and	adding	a	Q	for	every	
pair:	repeat	eventually	reducing	to	a	quadraNc	(happily	this	can	be	automated):



Applica,on:	Completely	Quantum	
Neural	Networks



Recap	of	classical	NNs:	the	AI	in	your	phone	consists	of	a	NN	that		encodes	the	soluNon	to	a	

class	of	problems	in	weights	and	biases:		

NN	produces	outputs	Y	by	passing	inputs	x	through	layers	with	acNvaNon	funcNons	g	as	follows:

features,	x outputs,	Y

weights,	w



In	detail	it	is	put	together	like	this	…

input hidden output

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

16

weight

layer	l

node number of 
connection in layer 

l+1

node number of 
connection in layer l

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

b(l)i (229)

16

bias	of	layer	l	is	connected	to	all	nodes	in	layer	l+1,	thus

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

b(l)i (229)

16

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

b(l)i (229)

16

and have	to	be	calculated	for	a	given	problem	during	the	learning	phase	of	the	NN

The	feedforward	pass:	

activation function



The	loss	funcNon	establishes	a	
hypersurface	for	which	we	can	
try	to	find	a	minimum	using	

gradient	descent

To	make	the	network	learn	(in	a	supervised	way),	we	define	a	loss	funcNon	that	we	minimise	
for	a	whole	load	of	previous	data	to	determine	all	the	weights	and	biases	(e.g.	for	
classificaNon	with	data	labelled	data	by	a):

Classically:	minimise	L	using	gradient	descent	and	backpropagaNon

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

b(l)i (229)

z(l)i (230)

16

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

b(l)i (229)

z(l)i (230)

16

Gradient	descent	for	every	weight											
and	every	bias									in	the	NN	looks	like:

in	short:

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

b(l)i (229)

z(l)i (230)

↵ (231)

16

where	 is	the	learning	rate	



Quantum	training	of	NNs:	The	training	process	can	be	one	of	the	lengthiest	parts	
of	the	process:	can	we	use	a	quantum	annealer	to	train?	(Ater	all	it	is	built	to	
minimise	loss	funcNons.)

If	we	think	about																																																				we	want	to	avoid	having	to	encode	each	data	
point	in	qubits	

We	will	instead	encode	the	weights	and	biases	in	qubits	in	binary	fashion	and	read	off	their	
values.	But	the	resulNng	Hamiltonian	will	again	be	a	high	order	polynomial	in	sigma’s	just	like	
before	-	depending	on	the	number	of	layers	etc.	Therefore	need	reduce	the	Hamiltonian.	

Finally	the	annealer	is	not	completely	connected	(couplings	are	missing).	Need	to	find	a	minor	
embedding	linking	qubits	together	(libraries	available	on	D-wave	but	also	an	NP	hard	problem	in	
principle).		

Three	problems	must	be	solved	to	do	this:



Example:	we	took	a	single	hidden	layer:

The	acNvaNon	funcNon	must	be	nonlinear	for	a	NN	to	work,	but	it	can	be	simple:			

Then	what	appears	in	the	loss	funcNon																																																															is			

So	we	are	in	the	business	of	encoding	something	sex@c	in	the	spins	even	for	this	simple	
acNvaNon	funcNon,	with	the	weights	being	encoded	as	fracNonal	binaries	…

<latexit sha1_base64="rSuatiVuL0+tJc5HtJrnYeL7hGM=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2k3btJht2N0Ip/Q9ePCji1f/jzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0jJVDJtMCqk6AdUoeIxNw43ATqKQRoHAdjC+zfz2EyrNZfxgJgn6ER3GPOSMGiu1egEaWuqXK27VnYOsEi8nFcjR6Je/egPJ0ghjwwTVuuu5ifGnVBnOBM5KvVRjQtmYDrFraUwj1P50fu2MnFllQEKpbMWGzNXfE1MaaT2JAtsZUTPSy14m/ud1UxNe+1MeJ6nBmC0WhakgRpLsdTLgCpkRE0soU9zeStiIKsqMDSgLwVt+eZW0LqreZbV2X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvjnRenHfnY9FacPKZY/gD5/MH/NCOwQ==</latexit>

�
<latexit sha1_base64="rSuatiVuL0+tJc5HtJrnYeL7hGM=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2k3btJht2N0Ip/Q9ePCji1f/jzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0jJVDJtMCqk6AdUoeIxNw43ATqKQRoHAdjC+zfz2EyrNZfxgJgn6ER3GPOSMGiu1egEaWuqXK27VnYOsEi8nFcjR6Je/egPJ0ghjwwTVuuu5ifGnVBnOBM5KvVRjQtmYDrFraUwj1P50fu2MnFllQEKpbMWGzNXfE1MaaT2JAtsZUTPSy14m/ud1UxNe+1MeJ6nBmC0WhakgRpLsdTLgCpkRE0soU9zeStiIKsqMDSgLwVt+eZW0LqreZbV2X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvjnRenHfnY9FacPKZY/gD5/MH/NCOwQ==</latexit>

�



e.g.	2D	datasets	=	“circles”,	“quadrants”,	“bands”	and	t-tbar	yields	a	classificaNon	curve.	
(The	features	for	the	laoer	are	the	highest	transverse	momentum	of	a	b-jet	and	the	
missing	energy,	in	simulated	LHC	pp	collisions.)	

Unexpected	advantage:	our	weights	
and	biases	are	all	discreNsed	due	to	
the	“qubiNsaNon”.	A	standard	NN	
cannot	be	trained	very	well	for	
discrete	weights	and	biases	as	it	gets	
stuck.	



Encoding	con,nuous	parameters:	
Simula,ng	QFT



Many	interesNng	QFT	problems	involve	“tunnelling”:

•Electroweak	phase	transiNon	(Higgs	mechanism)		

•InflaNon	

•Baryogenesis	(creaNon	of	(anN)maoer	asymmetry)	

•Instanton	processes:	
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Simple	tunnelling	problem:	tunnelling	out	of	the	false	minimum	of	

this	poten,al	(where								is	the	single	space	coordinate)
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If	we	begin	in	the	false	minimum	on	the	leh,	the	system	should	be	able	to	tunnel	

to	the	lower	one	on	the	right.

Simple	tunnelling	problem:	tunnelling	out	of	the	false	minimum	of	

this	poten,al	(where								is	the	single	space	coordinate)
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To	encode	U,	first	encode						by	discreNsing	its	value	using	N	qubits:

These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,

S1 = 2⇡2

Z 1

0
d⇢

1

2
�̇2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adiabatic theorem of quantum mechanics, which implies that a
physical system will remain in the ground state if a given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
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◆
(�Z |0i = |0i, �Z |1i = �|1i) is the Pauli Z operator, with the subscript indicating which spin

it acts upon, and �X is its friend pointing in the X-direction. The gradual decrease of �(t) ! 0 from a large value
should drive the system into the ground state of the time-independent part of the Hamiltonian, and this is where we
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It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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Pins	the	end	spins	at	opposing	values penalty	for	different	adjacent	spin

where in the present context one might for example take a fiducial value �0 ⇡ �v and ⇠ = 2v/N , with M⌫ = �⇢.
Thus our Ising interaction Jij is an (MN)⇥ (MN) matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to the Hamiltonian
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As shown in [47], taking ⇤ to be much larger than every other energy scale in the overall Hamiltonian, these terms
will constrain the system to remain in the ground subspace of the Hamiltonian, where exactly one spin position, ↵`

say, is frustrated for each `. These states are of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is represented by the position ↵` of the frustrated domain wall. Conversely
the field value at the `’th position can be found by making the measurement
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and an h that is independent of `,
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This separates the system of spins into blocks of size N , each of which represents a field value.
Moving on to H(QFT ), the potential is somewhat easier to deal with than the kinetic terms, because it can be

encoded entirely in hi. This is only to be expected because the �` are independent of each other in the potential
which gives entirely localised contributions to the Hamiltonian. The value of U(�(⇢`)) at each point follows directly
from Eq.(14):
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This	is	the	domain-wall	encoding.	Begin	in	the	Ising	model	with	a	ferromagneNc	
interacNon	that	favours	as	few	flips	as	possible,	but	frustrate	at	least	one	by	having	
the	endpoints	pinned	at	-1	…	+1.

For	this	to	work	as	a	consistent	encoding	we	have	to	avoid	e.g.



To	add	the	potenNal	we	then	add	a	contribuNon	to	the	linear	h	couplings
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Typical	embedding

Finally	add	everything	together	(use	N=200	qubits):

H = H
chain +H

U



Figure 3: The potential as seen by the Ising model on the
annealer, where we choose N = 200 qubits, and parameters
k = 1 and v = 5, c.f. the actual potential in Fig.1. Note the
large negative overall energy off-set due to the field theory
encoding, and the “dropped qubit” at � = �0.

where �ij is the Kronecker-�. These J terms contribute
zero to the Hamiltonian except at the location of the
domain wall, where (2�Z

k �
Z
k � �Z

k �
Z
k+1 � �Z

k+1�
Z
k ) = 4,

yielding a contribution U0(�) at that point.
Note that h(chain) is also scaled down when C(t) is

small, so with this simple encoding we cannot set C = 0.
However we do not need to initially turn off U1 entirely,
but just need to reduce it so that tunnelling is not possi-
ble. A more precise encoding that allows one to turn off
U1 entirely is to share U1 between J and h such that the
initial value of C makes them cancel exactly. That is

J (U)
ij =

1

4


U0(x0 + ⇠j)�

C0

1� C0
U1(x0 + ⇠j)

�

�
2�ij � �i(j�1) � �(i�1)j

�
,

h(U)
j =�

⇠

2

1

1� C0
U 0
1(x0 + ⇠j), (24)

where the choice of parameters C(0) = C0 and C(tf ) = 1
gives the desired behaviour. We shall use this later on but
for the moment we will stay with the simpler assignment
of potentials.

This completes the encoding of the field theory poten-
tial. To verify that it is working as desired, we show
the resulting potential in Fig.3. For this and the remain-
der of the work we shall take N = 200 as a reasonable
compromise between accuracy and efficiency on the an-
nealer. As expected there are two unavoidable features
of the Ising potential compared to the original one, both
caused by the Ising chain encoding of the field theory:
first the negative rewards in Jchain cause an off-set of
order �N⇤; second the rewards in hchain in Eq.(18) im-
ply “dropped qubits” at the first and last positions (the
one at the last position is off the scale above the plot).
Neither of these should affect the tunnelling rate.

Let us now turn to the configuration of the anneal it-
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Figure 4: Anneal schedule parameters. The thermal contribu-
tion is shown as a solid line, while A and B are the coefficients
scaling the classical Ising and transverse field contributions
respectively

how “quantum” the system is, and are best visualised
with the plot in Fig.4. When s = 0 the system is maxi-
mally quantum, and when s = 1 the system has arrived at
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the particular potential we are considering the behaviour
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have relatively slow tunnelling and maintain good con-
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system is unable to tunnel, so ultimately it is expected
to reach the ground state of U0 given by Eq.(4). Once
it is in a stable bound state we can adjust C(t) to send
the coupling k ! 1, and turn on tunnelling for the rest
of the anneal. This configuration, in which we first al-
low the system to settle, is forced on us by the quantum
properties of the annealer. Indeed if we were to start
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Results:	(reverse	anneal	with	200	qubits)	we	see	tunnelling	—	e.g.	at	v=2.5	

Figure 6: The probability density of the SHO with N = 200
and with sq = 0.7 after time t = 75µs and with  = 0.06.
The ground-states are measured with an interval �� = 13.
The probability density approximates the red line, which cor-
responds to � ⌘ ~2/2m⌘2

0 = 0.33.

we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
a genuine measurement of the ground state wavefunction
of a quantum mechanical system.

It is also instructive to consider the fact that the an-
nealer returns a wave-function with different � depending
on the value of sq. When we choose sq we imbue the effec-
tive field theory with a kinetic �̇2 term that has a certain
value of ~2/2m we do not know. The ground state has
to adjust to have the matching value of �. Clearly as
we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it remains
as a �-function which is where we begin. In other words
the “classical” �-function position eigenstate is simply the
ground state wave function when there is no transverse
field component.

B. Tunnelling

We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
ence of tunnelling is clearly evident. Further evidence

Figure 7: The probability distribution with v = 2.5, sq = 0.7
after ttunnel = 50, 100, 150µs.

Figure 8: The transition probabilities for different v with sq =
0.7 after ttunnel = 100µs.

in support of this being genuine quantum tunnelling can
be found by studying the decay rates as a function of v.
This is shown in Fig.8 for several values of v where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behaviour can
be fit to the approximation in (14), as in Fig.9. For
the measured value of � the theoretical expectation is
log� = 3.0 ⇥ (1.66 � v). The best fit value (given by
the red line in Fig.9) is log� = 2.29 ⇥ (1.71 � v). Per-
haps unsurprisingly, the overall parameter � remains one
of the most difficult aspects to determine precisely given
the limitations of the annealer for this study. Never-
theless the observed behaviour provides support for the
presence of tunnelling.

C. Quantum versus Thermal

It is important to definitively exclude the possibility
that what is being observed is thermal rather than quan-
tum tunnelling. More precisely we wish to establish that

7



Note	that	this	is	in	principle	an	experimental	measurement		

of	the	tunnelling	rate!
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Results:	it	appears	to	decrease	exponen,ally	with	v	as	expected	(WKB	

approxima,on):	
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Figure 9: Best fit values for the tunnelling fraction P (v) =
ae�bv for varying vacuum expectation values v, with tun-
nelling time ttunnel = 100µs are a = 50.5 and b = 2.29.

the states are really tunnelling through the barrier rather
than being thermally excited over the top, noting for ex-
ample that an explanation for the drop-off with v ob-
served in the tunnelling rate above, could simply be due
to the height of the barrier (and hence the activation
energy Ea) increasing with v.

In order to probe this particular question, we will now
examine a potential that provides as “clean” as possible
a separation between quantum and thermal behaviour,
as shown in Figure 10. The potential is divided up more
precisely than before, in the manner described earlier, so
that it is of the form in (24) where we take C0 = 0.2 as
our initial h-gain parameter. In other words the terms in
our new potential can be written

U0 =
3

4
tanh2 �� C0 U1 ,

U1 = k0 tanh2 �� k sech2c(�� v) , (27)

with the potential at t = 0 being the single Pöschl-Teller
well, shown as the solid blue line. When C(t) ! 1, the
first term in U1 then raises the sides of the well by (1 �
C0)k0, while the second term introduces a new well at
� = v of width ⇠ 1/c and depth (1�C0)k. We will take
c = 3 and k0 = 1/2. We then consider k = k0 or k = 2.
For this study we will also choose sq = 0.65 which gives
more rapid tunnelling, allowing us choose values of v that
are in the flat region of the potential.

There are several reasons that this constitutes a clean
separation of quantum and thermal behaviour. First it
is notable from the study above that the bound state
in which the system begins has a rather high energy.
As such if we simply introduce a new minimum as we
did earlier then it is likely that some components of the
wave-function will be able to tunnel rapidly. (We observe
this.). The initial dip at v would also be able to capture
states during the dissipation phase. Neither of these two
types of state could be very easily distinguished from ones
that had thermally tunnelled.

Figure 10: Minimally disturbing the initial state in order to
test if the tunnelling exhibits quantum or thermal behaviour.
The initial potential is a single well, and additional terms
raise a barrier between it and a new well that is introduced
with either a minimum at either exactly the same height as
the original potential, or deeper than the original one.

What do we expect the tunnelling behaviour to be
in the potential above? In the situation where k = k0

no new minimum is introduced that would be quantum
mechanically accessible to any component of the initial
bound state. Therefore in principle we should not find
any states in this minimum at all if the system is purely
quantum, although in practice this will depend on there
being no remaining continuous component in the spec-
trum at all. This is in contrast to the case where k = 2
shown as the dashed red line in Fig. 10, where the stan-
dard quantum tunnelling should take place. Moreover
according to (14) the observed tunnelling rate into this
minimum should again drop-off with increasing v, even if
we consider values of v in the region where barrier height
is constant.

Let us contrast this behaviour with what one would
expect for a thermally activated system. In this case
there would be little distinction between the k = 1/2
and k = 2 cases. Once thermal effects are large enough
to excite states over the barrier, roughly similar propor-
tions would be captured by the new minimum at � = v.
How much remains trapped there depends somewhat on
the temperature and whether the transitions are in equi-
librium. Calling the minima at 0 and v, A and B respec-
tively, and the height of the barrier Ea, ultimately such
a system would attempt to reach an equilibrium where
the transition rates are the same in both directions, i.e.
NA
NB

= eEa/kBT e�(Ea�EB))/kBT = eEB/kBT . If the system
were fully in equilibrium then the ratio of the numbers of
states found in the new minima would be independent of
the height of the barrier, and of order e(EB1�EB2 )/kBT ,
where 1, 2 labels the choice k = k0 or 2 respectively. How-
ever the difference in energies (EB1 �EB2) is of the same
order as the activation energy Ea itself. Therefore a sig-
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Figure 6: The probability density of the SHO with N = 200
and with sq = 0.7 after time t = 75µs and with  = 0.06.
The ground-states are measured with an interval �� = 13.
The probability density approximates the red line, which cor-
responds to � ⌘ ~2/2m⌘2

0 = 0.33.

we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
a genuine measurement of the ground state wavefunction
of a quantum mechanical system.

It is also instructive to consider the fact that the an-
nealer returns a wave-function with different � depending
on the value of sq. When we choose sq we imbue the effec-
tive field theory with a kinetic �̇2 term that has a certain
value of ~2/2m we do not know. The ground state has
to adjust to have the matching value of �. Clearly as
we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it remains
as a �-function which is where we begin. In other words
the “classical” �-function position eigenstate is simply the
ground state wave function when there is no transverse
field component.

B. Tunnelling

We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
ence of tunnelling is clearly evident. Further evidence

Figure 7: The probability distribution with v = 2.5, sq = 0.7
after ttunnel = 50, 100, 150µs.

Figure 8: The transition probabilities for different v with sq =
0.7 after ttunnel = 100µs.

in support of this being genuine quantum tunnelling can
be found by studying the decay rates as a function of v.
This is shown in Fig.8 for several values of v where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behaviour can
be fit to the approximation in (14), as in Fig.9. For
the measured value of � the theoretical expectation is
log� = 3.0 ⇥ (1.66 � v). The best fit value (given by
the red line in Fig.9) is log� = 2.29 ⇥ (1.71 � v). Per-
haps unsurprisingly, the overall parameter � remains one
of the most difficult aspects to determine precisely given
the limitations of the annealer for this study. Never-
theless the observed behaviour provides support for the
presence of tunnelling.

C. Quantum versus Thermal

It is important to definitively exclude the possibility
that what is being observed is thermal rather than quan-
tum tunnelling. More precisely we wish to establish that

7
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Results:	it	appears	to	decrease	exponen,ally	with	v	as	expected	(WKB	
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These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,

S1 = 2⇡2

Z 1

0
d⇢

1

2
�̇2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adiabatic theorem of quantum mechanics, which implies that a
physical system will remain in the ground state if a given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum annealer is that of a general Ising model, in addition to a
time-dependent transverse field:

HQA(t) =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i +�(t)

X

i

�X
i , (9)

where �Z
i =

✓
1 0
0 �1

◆
(�Z |0i = |0i, �Z |1i = �|1i) is the Pauli Z operator, with the subscript indicating which spin

it acts upon, and �X is its friend pointing in the X-direction. The gradual decrease of �(t) ! 0 from a large value
should drive the system into the ground state of the time-independent part of the Hamiltonian, and this is where we
will put the field theory:

H =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i . (10)

It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:
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2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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where in the present context one might for example take a fiducial value �0 ⇡ �v and ⇠ = 2v/N , with M⌫ = �⇢.
Thus our Ising interaction Jij is an (MN)⇥ (MN) matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to the Hamiltonian

H(chain)
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@
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Z
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A . (12)

As shown in [47], taking ⇤ to be much larger than every other energy scale in the overall Hamiltonian, these terms
will constrain the system to remain in the ground subspace of the Hamiltonian, where exactly one spin position, ↵`

say, is frustrated for each `. These states are of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is represented by the position ↵` of the frustrated domain wall. Conversely
the field value at the `’th position can be found by making the measurement
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1

2
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(�0 + j⇠) h�Z
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which only receives a contribution from frustrated spin position with j = ↵`. For later, it is useful to note that this
is equivalent to
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2
� ⇠

2

NX

j=1

h�Z
`N+ji . (15)

In terms of Jij and hi, adding the full set of Ising-chain Hamiltonians given by Eq.(12) corresponds to
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and an h that is independent of `,

h(chain)
`N+j = ⇤ (�j1 � �jN ) . (17)

This separates the system of spins into blocks of size N , each of which represents a field value.
Moving on to H(QFT ), the potential is somewhat easier to deal with than the kinetic terms, because it can be

encoded entirely in hi. This is only to be expected because the �` are independent of each other in the potential
which gives entirely localised contributions to the Hamiltonian. The value of U(�(⇢`)) at each point follows directly
from Eq.(14):
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2
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This yields an additional contribution to the h which is also independent of `: that is for all ` we have
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It can also be convenient to write this in terms of U derivatives as
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Then	kineNc	terms	are	as	follows:

which correctly gives �(⇢`) of Eq.(15) in the event that we take U(�) = � (because we know that �Z
`N = 1). In an

action with arbitrary c 6= 0, we would need to evaluate h(U) ⌘
R
d⇢⇢cU , so that h`N+i would acquire a prefactor of

(`⌫)c. However as we will see later the c 6= 0 problem cannot actually be done using the action alone, but one instead
has to use similar methods to solve the PDE in Eq.(2).

Up to this point the M -factors have been inert and there has been no coupling between the fields at different
positions in ⇢`. At this stage the system would simply relax to M decoupled values of �(⇢`) that minimise U in
either one of its two vacua. This changes once we include the derivatives in the kinetic terms, which contribute to the
bilinear interactions, J . These terms are discretised in ⇢ as

SKE ⌘
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0
d⇢

1

2
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M!1

M�1X
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1
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(�(⇢`+1)� �(⇢`))

2 , (21)

where ⌫ = �⇢/M scales so as to keep �⇢ constant, and where for convenience we omit the factor 2⇡2. Inserting the
discrete representation of the field values as well using Eq.(15), we find
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Hence the bilinear terms receive the additional contribution:
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or in other words
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�
. (24)

(Note that the terms with ` = 1,M are irrelevant because they are about to be swamped by the boundary condition).
Now it is the N ⇥N indices that are inert, because every i couples to every j.

Note that the diagonal parts of Eq.23 could be embedded in the hi terms, using the fact that for valid single domain
wall states we have h�Z

`N+i�
Z
`N+ji = h�Z

`N+j � �Z
`N+i +1i for j > i. As bilinear terms may be hard to engineer on real

devices, this may be desirable, but for the present study it is more convenient to keep the kinetic terms entirely.
Finally we must add terms to enforce a boundary condition. In the c = 0 case it is sufficient to fix the endpoints of

the solution in the two minima (so that, at the risk of confusion, the instanton solution itself approximates a physical
domain wall). This can be done by adding a term H(BC) = ⇤0

2 (�(0)+ v)2 + ⇤0

2 (�(⇢M )� v)2 with ⇤0 being some other
large parameter. This is simply an extra contribution to h which follows directly from Eq.(20), of the form
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(
�⇤0(�0 + j⇠ + v) ; ` = 1, 8j
�⇤0(�0 + j⇠ � v) ; ` = M � 1, 8j .

(25)

Together with Eqs.(16,17,20,23), this completes the encoding of the field theory problem of Eq.(7).

IV. IMPLEMENTATION

In Sec. III we have devised a method which encodes the problem of finding a solution to a quantum field theoretical
problem, i.e. of finding a solution to Eq. 7, into finding the ground state of the Hamiltonian of an Ising model. The
latter can then be given an interpretation as the solution to Eq. 7 through Eq. 13, for each ⇢l with l 2 [1, ...,M ].
To show that our approach is valid and converges to the correct solution �(⇢), we now implement the method onto
various annealing samplers, as provided by D-Wave [48].

The quantum states are characterised by NM -tuples of the form |11...100...0i and the Hilbert space of the Ising
model is therefore 2NM dimensional. Sampling such a large vector space classically, with an exact sampler, while
calculating the expectation value hHi for each state quickly becomes a computationally prohibitive task for NM � 20.
Conversely, a discretisation with NM . 20 cannot give a reasonable approximation for the derivatives of Eq. 21.
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where in the present context one might for example take a fiducial value �0 ⇡ �v and ⇠ = 2v/N , with M⌫ = �⇢.
Thus our Ising interaction Jij is an (MN)⇥ (MN) matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to the Hamiltonian
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As shown in [47], taking ⇤ to be much larger than every other energy scale in the overall Hamiltonian, these terms
will constrain the system to remain in the ground subspace of the Hamiltonian, where exactly one spin position, ↵`

say, is frustrated for each `. These states are of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)
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and an h that is independent of `,

h(chain)
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This separates the system of spins into blocks of size N , each of which represents a field value.
Moving on to H(QFT ), the potential is somewhat easier to deal with than the kinetic terms, because it can be

encoded entirely in hi. This is only to be expected because the �` are independent of each other in the potential
which gives entirely localised contributions to the Hamiltonian. The value of U(�(⇢`)) at each point follows directly
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Then	kineNc	terms	are	as	follows:

which correctly gives �(⇢`) of Eq.(15) in the event that we take U(�) = � (because we know that �Z
`N = 1). In an

action with arbitrary c 6= 0, we would need to evaluate h(U) ⌘
R
d⇢⇢cU , so that h`N+i would acquire a prefactor of

(`⌫)c. However as we will see later the c 6= 0 problem cannot actually be done using the action alone, but one instead
has to use similar methods to solve the PDE in Eq.(2).

Up to this point the M -factors have been inert and there has been no coupling between the fields at different
positions in ⇢`. At this stage the system would simply relax to M decoupled values of �(⇢`) that minimise U in
either one of its two vacua. This changes once we include the derivatives in the kinetic terms, which contribute to the
bilinear interactions, J . These terms are discretised in ⇢ as
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where ⌫ = �⇢/M scales so as to keep �⇢ constant, and where for convenience we omit the factor 2⇡2. Inserting the
discrete representation of the field values as well using Eq.(15), we find
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or in other words
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(Note that the terms with ` = 1,M are irrelevant because they are about to be swamped by the boundary condition).
Now it is the N ⇥N indices that are inert, because every i couples to every j.

Note that the diagonal parts of Eq.23 could be embedded in the hi terms, using the fact that for valid single domain
wall states we have h�Z

`N+i�
Z
`N+ji = h�Z

`N+j � �Z
`N+i +1i for j > i. As bilinear terms may be hard to engineer on real

devices, this may be desirable, but for the present study it is more convenient to keep the kinetic terms entirely.
Finally we must add terms to enforce a boundary condition. In the c = 0 case it is sufficient to fix the endpoints of

the solution in the two minima (so that, at the risk of confusion, the instanton solution itself approximates a physical
domain wall). This can be done by adding a term H(BC) = ⇤0

2 (�(0)+ v)2 + ⇤0

2 (�(⇢M )� v)2 with ⇤0 being some other
large parameter. This is simply an extra contribution to h which follows directly from Eq.(20), of the form

h(BC)
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(
�⇤0(�0 + j⇠ + v) ; ` = 1, 8j
�⇤0(�0 + j⇠ � v) ; ` = M � 1, 8j .

(25)

Together with Eqs.(16,17,20,23), this completes the encoding of the field theory problem of Eq.(7).

IV. IMPLEMENTATION

In Sec. III we have devised a method which encodes the problem of finding a solution to a quantum field theoretical
problem, i.e. of finding a solution to Eq. 7, into finding the ground state of the Hamiltonian of an Ising model. The
latter can then be given an interpretation as the solution to Eq. 7 through Eq. 13, for each ⇢l with l 2 [1, ...,M ].
To show that our approach is valid and converges to the correct solution �(⇢), we now implement the method onto
various annealing samplers, as provided by D-Wave [48].

The quantum states are characterised by NM -tuples of the form |11...100...0i and the Hilbert space of the Ising
model is therefore 2NM dimensional. Sampling such a large vector space classically, with an exact sampler, while
calculating the expectation value hHi for each state quickly becomes a computationally prohibitive task for NM � 20.
Conversely, a discretisation with NM . 20 cannot give a reasonable approximation for the derivatives of Eq. 21.
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(Note that the terms with ` = 1,M are irrelevant because they are about to be swamped by the boundary condition).
Now it is the N ⇥N indices that are inert, because every i couples to every j.

Note that the diagonal parts of Eq.23 could be embedded in the hi terms, using the fact that for valid single domain
wall states we have h�Z

`N+i�
Z
`N+ji = h�Z

`N+j � �Z
`N+i +1i for j > i. As bilinear terms may be hard to engineer on real

devices, this may be desirable, but for the present study it is more convenient to keep the kinetic terms entirely.
Finally we must add terms to enforce a boundary condition. In the c = 0 case it is sufficient to fix the endpoints of

the solution in the two minima (so that, at the risk of confusion, the instanton solution itself approximates a physical
domain wall). This can be done by adding a term H(BC) = ⇤0

2 (�(0)+ v)2 + ⇤0

2 (�(⇢M )� v)2 with ⇤0 being some other
large parameter. This is simply an extra contribution to h which follows directly from Eq.(20), of the form

h(BC)
N`+j =

(
�⇤0(�0 + j⇠ + v) ; ` = 1, 8j
�⇤0(�0 + j⇠ � v) ; ` = M � 1, 8j .

(25)

Together with Eqs.(16,17,20,23), this completes the encoding of the field theory problem of Eq.(7).

IV. IMPLEMENTATION

In Sec. III we have devised a method which encodes the problem of finding a solution to a quantum field theoretical
problem, i.e. of finding a solution to Eq. 7, into finding the ground state of the Hamiltonian of an Ising model. The
latter can then be given an interpretation as the solution to Eq. 7 through Eq. 13, for each ⇢l with l 2 [1, ...,M ].
To show that our approach is valid and converges to the correct solution �(⇢), we now implement the method onto
various annealing samplers, as provided by D-Wave [48].

The quantum states are characterised by NM -tuples of the form |11...100...0i and the Hilbert space of the Ising
model is therefore 2NM dimensional. Sampling such a large vector space classically, with an exact sampler, while
calculating the expectation value hHi for each state quickly becomes a computationally prohibitive task for NM � 20.
Conversely, a discretisation with NM . 20 cannot give a reasonable approximation for the derivatives of Eq. 21.

6

Add	everything	together:

These limiting regimes give simple power-law behaviour for the tunnelling actions, against which the scaling of the
(logarithm of) tunnelling rates could be tested, providing a useful laboratory for directly studying quantum annealing
results.

As we stated in the introduction, the purpose if this study is not to recover these classical instanton solutions for the
tunnelling per se, as they are well-known, but rather to demonstrate that the corresponding field-theory configuration
can be suitably encoded into a quantum annealer. Once we have established this as a working principle, one could
even envisage testing for the above behaviour directly. Therefore we will in what follows focus on using a quantum
annealer to recover the simple c = 0 solution required for the thin-wall regime, as a proof of principle. We will
therefore set ourselves the task of minimising the corresponding action integral,

S1 = 2⇡2

Z 1

0
d⇢

1

2
�̇2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adiabatic theorem of quantum mechanics, which implies that a
physical system will remain in the ground state if a given perturbation acts slowly enough, and if there is a gap
between the ground state and the rest of the system’s energy spectrum [24]. For the annealer to provide a solution to
a mathematical problem, e.g. the calculation of �(⇢) for Eq. 7, we have to find a mapping such that the expectation
value of its Hamiltonian can be identified with its solution, i.e. that it allows in this example to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum annealer is that of a general Ising model, in addition to a
time-dependent transverse field:

HQA(t) =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i +�(t)

X

i

�X
i , (9)

where �Z
i =

✓
1 0
0 �1

◆
(�Z |0i = |0i, �Z |1i = �|1i) is the Pauli Z operator, with the subscript indicating which spin

it acts upon, and �X is its friend pointing in the X-direction. The gradual decrease of �(t) ! 0 from a large value
should drive the system into the ground state of the time-independent part of the Hamiltonian, and this is where we
will put the field theory:

H =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i . (10)

It is worth noting that the couplings Jij and hi could also be adiabatically adjusted in the annealing process, and this
could ultimately be used to adjust the potential U(�) of a system in the quantum annealer so as to observe tunnelling,
assuming it can be encoded. We will further split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC). (11)

Here, H(QFT) is the Hamiltonian corresponding to the minimisation of the action in Eq. 7 and H(BC) is a Hamiltonian
that we add to enforce the boundary conditions2.

However our first task is to encode continuous field values over a continuous domain, with only the discrete Ising
model to hand: this is what H(chain) is for. We begin by splitting the radius variable ⇢ into M � 1 discrete values
and the field value at the `’th position into N � 1 discrete values:

⇢` = `⌫ = ⌫ . . .M⌫
�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

2 For a classical neural network-based approach to solving Eq. 2 by treating it as an optimisation problem see [46].
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Example	Z2	domain	wall	potenNal	in	one	space	dimension	on	Dwave

Figure 1: The thick-wall potential left (with ✏ = 0.3, and true and false minima at �� = �1.12542 and �+ = 0.786483
respectively), and thin-wall potential right (with ✏ = 0.01).

Figure 2: Solutions for the thick- and thin-wall potentials. The thin-wall solution computed using the hybrid quantum-classical
techniques as discussed later is overlaid on the right panel.

I. INTRODUCTION

There has been increasing interest in the possibility of simulating Quantum Field Theory (QFT) on quantum
computers [1], with the development of efficient algorithms to compute scattering probabilities in simple theories of
scalars and fermions [2–17]. In particular it is known that by latticizing field theories, quantum computers should
be able to compute scattering probabilities in QFTs with a run time that is polynomial in the desired precision, and
in principle to a precision that is not bounded by the limits of perturbation theory. However a particularly difficult
aspect of this programme is the preparation of scattering states [4–6, 8, 9, 14–17], with several works having proposed
a hybrid classical/quantum approach to solving this problem [11, 17–19]. A complementary approach is to map field
theory equations to discrete quantum walks [20–23] which can be simulated on a universal quantum computer.

In this paper we point out that certain nonperturbative quantum processes do not suffer from this difficulty, and
lend themselves much more readily to study on quantum computers in the short term. These are the tunnelling and
related processes, which are of fundamental importance for the explanation of quantum mechanical and quantum field
theoretical phenomena, for example transmission rates of electron microsopes, first-order phase transitions during
baryogenesis, or the potential initiation of stochastic gravitational wave spectra in the early Universe and many more.

Typically in tunnelling, the system begins in a false vacuum state that is non-dynamical and virtually trivial. The
initial state can be very long lived, with tunnelling to a lower “true” vacuum state taking place via non-perturbative
instanton configurations. In principle in such a process, the confinement of the initial state to a false vacuum prepares
the state for us, so that the analytically straighforward perturbative phenomena are paradoxically the quantum
computationally more difficult ones.

As opposed to quantum computing realised by a series of discrete “gate” operations, quantum annealers [24, 25]
perform continuous time quantum computations, and therefore they are well-suited to the study of tunnelling problems
by direct simulation (although our discussion could ultimately be adapted to gate-model quantum computers as well)
[26–36]. In particular these devices, produced by D-Wave Systems [37], can be seeded with initial conditions using the
“reverse annealing” feature,[38] allowing the simulation of dynamics. In contrast with the quantum-gate devices, they
are already quite large, 2048 qubits in the current generation, with work ongoing to develop much more connected 5000
qubit machines. Moreover they operate in a dissipative rather than fully coherent regime, which is likely to be realistic
for many real theories in which there are interactions with matter. In the present context this would be relevant for
studies of so-called thermal tunnelling rather than (or in addition to) quantum tunnelling. D-Wave devices have been
able successfully to simulate condensed matter systems, sometimes showing advantages over classical counterparts
[39–41].

The main objective of this work is to demonstrate how a field theory problem can be successfully encoded on a
quantum annealing device, and to do this we will focus on the classic problem of obtaining tunnelling rates for a
system stuck in a metastable minimum (a.k.a. false vacuum).
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So	we	can	encode	a	pure	field	theory	potenNal	on	the	annealer,	and	can	experiment	

with	QFT	tunnelling



Adiaba,c	Quantum	Compu,ng	versus	
Quantum	Annealing	and	QIBO



Here	is	a	wave-packet	in	the	SHO	potenNal:	

Can	implement	similar	scheme	on	gate	quantum	computers	using	Qibo:	 hops://qibo.science/



Quantum	annealers	like	D-wave’s	are	dissipaNve	—	they	lose	energy	(and	coherence)	but	are	

great	for	finding	ground	states	by	tunnelling.	

However	the	idea	of	AQC	was	a	bit	different.	To	find	the	ground	state	of	a	complicated	system	

we	begin	in	the	ground	state	of	the	pure	transverse	term	which	is	trivial.		

Then	the	original	idea	of	quantum	adiabaNc	compuNng	was	to	remain	in	the	ground	state	as	

we	adjust	the	Hamiltonian	to	end	up	in	the	difficult	Hamiltonian.	(Farhi,	Goldstone,	Gutmann,	Sipser)	

i.e.	The	evoluNon	of	the	spectrum																																																																																																															

should	look	something	like	…		



Qibo	gives	us	a	way	to	evolve	the	system	using	Trooerized	circuits	rather	than	the	fixed	Ising	

structure	of	the	annealer.

Trade-off	between	#qubits	versus	#gates:	the	circuit	looks	like	this	…

e.g.	the	commands	for	a	quadraNc	potenNal	look	like	this	…

On	the	plus	side	the	Hamiltonian	does	not	need	to	be	quadraNc	but	can	be	high	order.



For	a	binary	encoded	potenNal	in	H	(this	is	a	sep@c	in	binaries	encoded	directly)	we	can	indeed	
find	the	ground	state	of	the	whole	system:

At	the	moment	this	is	just	a	simulaNon	
(~	25	qubits	possible	to	simulate)

This	is	what	happens	to	the	ground	state	
during	the	anneal:



Summary

•Annealers	(both	quantum	and	simulated)	are	useful	tools	for	solving	both	
discrete	and	conNnuous	opNmisaNon	problems	

•Most	available	annealers	require	reducNon	to	quadraNc	Hamiltonian	—	
leads	to	large	qubit	number	(1000s)	

•Nevertheless	they	can	be	used	to	train	NNs	and	solve	anomaly	constraints	

•	We	have	seen	how	the	general	Ising	model	can	be	used	to	encode	QFT		

•Observe	and	measure	genuine	tunnelling	out	of	false	vacua	(d=1	QFT)	

•Important	disNncNon	between	quantum	annealing	versus	AQC.	The	laoer	
can	avoid	need	for	reducNon,	but	leads	to	large	gate	depth.



Reduc$on:	reduce	the	following

QA	tutorial	problems:

where	recall	we	can	subsNtute	for	pairs	with	auxilliary	qubits	…			

Tutor:	Luca	NutricaN

thus	…
<latexit sha1_base64="E+UFuaC9fg889Y5VVkNkSONfgm8=">AAACK3icbZDLSsNAFIYnXmu9RV26GSyCIJSkLeqy1E2XFewF2hAm00k7dHJxZlIoIe/jxldxoQsvuPU9nDQRtfXAwMf/n8OZ8zsho0Iaxpu2srq2vrFZ2Cpu7+zu7esHhx0RRByTNg5YwHsOEoRRn7QllYz0Qk6Q5zDSdSbXqd+dEi5o4N/KWUgsD4186lKMpJJsvdGEA3IX0SkcSBTZsVlJMqrC8wwquVOtJd9S2vUj2nrJKBvzgstg5lACebVs/WkwDHDkEV9ihoTom0YorRhxSTEjSXEQCRIiPEEj0lfoI48IK57fmsBTpQyhG3D1fAnn6u+JGHlCzDxHdXpIjsWil4r/ef1IuldWTP0wksTH2SI3YlAGMA0ODiknWLKZAoQ5VX+FeIw4wlLFW1QhmIsnL0OnUjYvyrWbWqneyOMogGNwAs6ACS5BHTRBC7QBBvfgEbyAV+1Be9betY+sdUXLZ47An9I+vwCnvqWD</latexit>

H ⌘ ⌧12⌧3 + ⌧2⌧34 + ⌧12⌧34

<latexit sha1_base64="EkLtQxzdg7lmUDY3fD+RNdeM3no=">AAACLnicbZDLSgMxFIYzXmu9jbp0EyxCS6XMtEUFN0URXLZgL9CWIZNm2tBMZkgyQhn6RG58FV0IKuLWxzC9eWk9EPj4z384Ob8bMiqVZb0YS8srq2vriY3k5tb2zq65t1+TQSQwqeKABaLhIkkY5aSqqGKkEQqCfJeRutu/GvXrd0RIGvBbNQhJ20ddTj2KkdKSY15nYSUNWwpFTmznhxczHJ5MKJ+BWfhjKRS/LYWZpZiBjpmycta44CLYU0iBaZUd86nVCXDkE64wQ1I2bStU7RgJRTEjw2QrkiREuI+6pKmRI5/Idjw+dwiPtdKBXiD04wqO1d8TMfKlHPiudvpI9eR8byT+12tGyjtvx5SHkSIcTxZ5EYMqgKPsYIcKghUbaEBYUP1XiHtIIKx0wkkdgj1/8iLU8jn7NFesFFOly2kcCXAIjkAa2OAMlMANKIMqwOAePIJX8GY8GM/Gu/ExsS4Z05kD8KeMzy++waTA</latexit>

+Q(⌧12; ⌧1, ⌧2) +Q(⌧34; ⌧3, ⌧4)



Factorising	an	integer	X:	let	the	factors	be
<latexit sha1_base64="MIRbg9w7iOvYTtVFk3qQTeJgNvY=">AAACCnicbVA7SwNBEJ6Lrxhfp5Y2q0EQAuEuBLURgjaWEcwDkvPY2+wlS/Ye7O4p4Uht41+xsVDE1l9g579xk1yhiQML32OG2fm8mDOpLOvbyC0tr6yu5dcLG5tb2zvm7l5TRokgtEEiHom2hyXlLKQNxRSn7VhQHHictrzh1cRv3VMhWRTeqlFMnQD3Q+YzgpWWXPPwwWXoAtmlCuoqnNzZmpZQdUYqmiDXLFpla1poEdgZKEJWddf86vYikgQ0VIRjKTu2FSsnxUIxwum40E0kjTEZ4j7taBjigEonnZ4yRsda6SE/EvqFCk3V3xMpDqQcBZ7uDLAayHlvIv7ndRLlnzspC+NE0ZDMFvkJRypCk1xQjwlKFB9pgIlg+q+IDLDAROn0CjoEe/7kRdCslO3TcvWmWqxdZnHk4QCO4ARsOIMaXEMdGkDgEZ7hFd6MJ+PFeDc+Zq05I5vZhz9lfP4AINqXYg==</latexit>

wi = 1 + 2⌧1i + 4⌧2i
<latexit sha1_base64="wN2u27lU8bb6vgxqxfCZqfkJKFc=">AAAB+3icbVDLSgNBEOz1GeNrjUcvg0GIB8NuCOpFCHrJMYJ5QLIus5PZZMjsg5lZNYT8ihcPinj1R7z5N84me9DEgoaiqpvuLi/mTCrL+jZWVtfWNzZzW/ntnd29ffOg0JJRIghtkohHouNhSTkLaVMxxWknFhQHHqdtb3ST+u0HKiSLwjs1jqkT4EHIfEaw0pJrFuroCpU6Z+jRtdM6va+4ZtEqWzOgZWJnpAgZGq751etHJAloqAjHUnZtK1bOBAvFCKfTfC+RNMZkhAe0q2mIAyqdyez2KTrRSh/5kdAVKjRTf09McCDlOPB0Z4DVUC56qfif102Uf+lMWBgnioZkvshPOFIRSoNAfSYoUXysCSaC6VsRGWKBidJx5XUI9uLLy6RVKdvn5epttVi7zuLIwREcQwlsuIAa1KEBTSDwBM/wCm/G1Hgx3o2PeeuKkc0cwh8Ynz8LSZHh</latexit>

H = (X � w1w1)
2

Let

Then	reduce	the	product:	

<latexit sha1_base64="PbJcVIE7po4T/1eQ7l54c7CSgaw=">AAACLHicbVDLSgMxFM3UV62vUZdugkVoEcpkKOpGKHbjsoJ9QFuHTJq2oZkHScZShn6QG39FEBcWcet3mGlnYVsPBM49515u7nFDzqSyrJmR2djc2t7J7ub29g8Oj8zjk4YMIkFonQQ8EC0XS8qZT+uKKU5boaDYczltuqNq4jefqZAs8B/VJKRdDw981mcEKy05ZnXsoLFjw1tYQPAS2rCjcPSEnKQoLwrbQcVl0/5r2kXHzFslaw64TlBK8iBFzTHfO72ARB71FeFYyjayQtWNsVCMcDrNdSJJQ0xGeEDbmvrYo7Ibz4+dwgut9GA/EPr5Cs7VvxMx9qSceK7u9LAaylUvEf/z2pHq33Rj5oeRoj5ZLOpHHKoAJsnBHhOUKD7RBBPB9F8hGWKBidL55nQIaPXkddKwS+iqVH4o5yt3aRxZcAbOQQEgcA0q4B7UQB0Q8ALewCeYGa/Gh/FlfC9aM0Y6cwqWYPz8Aj1soPI=</latexit>

w1w2 = (1 + 2⌧11 + 4⌧21 )(1 + 2⌧12 + 4⌧22 )
<latexit sha1_base64="DlZW0cuCH/mOgZwjv6yX7vZQwW4="></latexit>

= 1 + 2⌧11 + 4⌧21 + 2⌧12 + 4⌧22 + 4⌧11 ⌧
1
2 + 16⌧21 ⌧

2
2 + 8⌧21 ⌧

1
2 + 8⌧11 ⌧

2
2

<latexit sha1_base64="zr7Bc7TP9hk8AKf94hWcR5diZdE="></latexit>

= ⌧11 + 4⌧21 + 2⌧12 + 4⌧22 + 4⌧⌧1
1 ⌧

1
2
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1 ⌧
2
2
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1 ⌧
1
2
+ 8⌧⌧1

1 ⌧
2
2

<latexit sha1_base64="UpHrmdbxFdGwLTTsBxdYRf5+LR8=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR6LXjxWsB/YhLDZbtqlm03Y3VhK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzgoQzpW372ypsbG5t7xR3S3v7B4dH5eOTjopTSWibxDyWvQArypmgbc00p71EUhwFnHaD8e3c7z5RqVgsHvQ0oV6Eh4KFjGBtpEc3m/jOxK+5M79csav2AmidODmpQI6WX/5yBzFJIyo04VipvmMn2suw1IxwOiu5qaIJJmM8pH1DBY6o8rLFxTN0YZQBCmNpSmi0UH9PZDhSahoFpjPCeqRWvbn4n9dPdXjtZUwkqaaCLBeFKUc6RvP30YBJSjSfGoKJZOZWREZYYqJNSCUTgrP68jrp1KpOo1q/r1eaN3kcRTiDc7gEB66gCXfQgjYQEPAMr/BmKevFerc+lq0FK585hT+wPn8APrWQpg==</latexit>

{w1w2}

Then			
<latexit sha1_base64="3XFsd0BxxjYKfQyjy9ERAscbJfI="></latexit>

Hreduced = (X � {w1w2})2 +
X

i,j,a,b

Q(⌧⌧a
i ⌧b

i
; ⌧ai , ⌧

b
i )

Tutor:	Luca	NutricaNQA	tutorial	problems:



Tutor:	Luca	NutricaNQA	tutorial	problems:

To	check	it	in	the	drop-box	you	will	find	“Test	Code.ipynb”	which	contains	…



Lecture	3:	Metaheuris,cs	in	model	
building	and	string	theory



• Yamaguchi	and	H.	Nakajima	(2000)	

• Allanach,	Grellscheid,	Quevedo	(2004)	

• Akrami,	Scoo,	Edsjo,	Conrad	and	Bergstrom	(2009)	

• Bl	åba	c̈k,	Danielsson	and	Dibiteoo,	(2013)	

• SAA,	Rizos	(2014)	

• Ruehle	(2017)	

• SAA,	Cerdeno,	Robles	(2018)		

• Cole,	Schachner,	Shiu	(2019)	

• AbdusSalam,	SAA,	Cicoli,	Quevedo,	Shukla	(2020)	

• Bena,		Bl	åba	c̈k,	Grana,	Luest	(2021)	

• SAA,	ConstanNn,	Lukas,	Harvey	(2021,23)	

• Loges,	Shiu	(2021)		

• Cole,	Krippendorf,	Schachner,	Shiu	(2021)	

• Rawash,	Turton	(2022)	

• SAA,	ConstanNn,	Lukas,	Harvey,	NutricaN	(2023)	

• Berglund,	He,	Heyes,	Hirst,	Jejjala,	Lukas	(2023)	

•

GAs	in	par,cle	physics	…



• GA in early string work

• QA for particle model building and example stringy QA application

• GAs in heterotic line-bundle models

• GAs versus reinforcement learning

• Genetic Quantum Annealing 

Overview	…



Early	GA	string	applica,on



• Find	a	phenomenologically	aoracNve	PaN-Salam	model.	

• We	will	consider	the	“fermionic	string	construcNon”.	These	are	general	4D	models	in	which	the	
world	sheet	degrees	of	freedom	are	fermions.	Kawai,	Lewellyn,	Tye;	Antoniadis,	Bachas,	Kounnas	

• PS	Models	are	defined	in	terms	of	a	set	of	basis	vectors	Faraggi,	Kounnas,	Nooij,	Rizos

First	string	example SAA+Rizos,	2014

{v1, v2, . . . , v13}, where

v1 = 1 =
�
 µ, �1,...,6, y1,...,6,!1,...,6

|ȳ1,...,6, !̄1,...,6, ⌘̄1,2,3,  ̄1,...,5, �̄1,...,8
 

v2 = S =
�
 µ,�1,...,6

 

v2+i = ei =
�
yi,!i

|ȳi, !̄i
 
, i = 1, . . . , 6

v9 = b1 =
�
�34,�56, y34, y56|ȳ34, ȳ56, ⌘̄1,  ̄1,...,5

 
(2.11)

v10 = b2 =
�
�12,�56, y12, y56|ȳ12, ȳ56, ⌘̄2,  ̄1,...,5

 

v11 = z1 =
�
�̄1,...,4

 

v12 = z2 =
�
�̄5,...,8

 

v13 = ↵ =
�
 ̄45, ȳ1,2

 
. (2.12)

Here we denote the fermionised world-sheet coordinates as follows:  µ , �I , I = 1, . . . , 6 are

the superparteners of the 10-dimensional left-moving coordinates, yI ,!I/ȳI , !̄I , I = 1, . . . , 6

stand for six internal left/right coordinates, and  ̄A, A = 1, . . . , 5, ⌘̄↵,↵ = 1, 2, 3, �̄k, k =

1, . . . , 8 are the additional right-moving complex fermions. We have adopted the traditional

(ABK) notation where the fields included in a basis vector set are anti-periodic while the

rest are periodic.

The associated generalised GSO coe�cients are not fixed but they are constrained by

modular invariance. Consequently only the c
⇥
vi
vj

⇤
, i > j are independent. Moreover, the

requirements of space-time supersymmetry fix some of these coe�cients while some others

are set by convention. Altogether, only 51 independent GGSO phases are relevant to the

“observable” PS spectrum. These can be parametrised in terms of `i = {0, 1}, i = 1, . . . , 51 ,

– 13 –

• in	addiNon	to	a	set	of	GSO	projecNon	phases																																									which	have	to	
saNsfy	certain	condiNons	(later)

2 The problem: viable Free Fermionic Pati–Salam vacua

We now present the stringy problem that we will consider for this study, namely finding

phenomenologically viable Pati-Salam models in the Free Fermionic Formulation of the

heterotic superstring [6–8].

Before we describe the formalism in detail, let us briefly comment further on the

relation of our approach to the landscape programme. It has been known for a long time

that these and similar models lead to a huge number of possible vacua. For example [11]

estimated 101500 vacua in the closely related covariant lattice approach, far in excess even

of the later flux vacua estimate in [1]. The approach advocated in [1] and related papers

(see [12] for a recent review) was to determine correlations between physical characteristics.

Alternatively one can count the multiplicities of string vacua and regard the characteristics

that occur frequently as being more natural.

Completely general computer-based searches were used to consider correlations for

the Free Fermionic vacua in ref.[13]. However, there are limitations to these and similar

approaches, due to the space of models being so large, and due to the time-consuming

computation of the spectrum in every step of the search procedure. Importantly this leads

to inevitable restrictions as to what statistical correlations can and cannot reliably be

established, as discussed in ref.[14].

As we shall see, in performing a GA study one is also e↵ectively studying correla-

tions, but very di↵erent ones from those that were explored in the landscape programme.

In the language of GA’s the di↵erence is that essentially the latter explored phenotype-

phenotype correlations, whereas the frequencies occurring in GA studies are more sensitive

to genotype-phenotype correlations, in a way that will be made precise below.

Now to the formulation, in which consistent models are defined in terms of a set of

basis vectors

{v1, v2, . . . , vn}

and a set of phases

c


vi
vj

�
, i, j = 1, . . . , n

associated with generalised GSO projections (GGSO). The basis vectors and the GGSO

phases are subject to constraints that guarantee modular invariance of the one loop parti-

tion function. The elements of the basis vectors are related to the parallel transportation

properties of the fermionised world-sheet degrees of freedom along the non-contractable

torus loops. This yields models directly in four space-time dimensions with internal coor-

dinates fixed at the fermionic point.
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as follows

cij =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2 ↵

1 1 1 1 1 1 1 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 1 0 `26 `27 `28 `29 `30 `6 0 `14 `20 `41

e2 1 1 `26 0 `31 `32 `33 `34 `7 0 `15 `21 `42

e3 1 1 `27 `31 0 `35 `36 `37 0 `10 `16 `22 `43

e4 1 1 `28 `32 `35 0 `38 `39 0 `11 `17 `23 `44

e5 1 1 `29 `33 `36 `38 0 `40 `8 `12 `18 `24 `45

e6 1 1 `30 `34 `37 `39 `40 0 `9 `13 `19 `25 `46

b1 0 0 `6 `7 0 0 `8 `9 1 0 `2 `4 `47

b2 0 0 0 0 `10 `11 `12 `13 0 1 `3 `5 `48

z1 1 1 `14 `15 `16 `17 `18 `19 `2 `3 1 `1 `49

z2 1 1 `20 `21 `22 `23 `24 `25 `4 `5 `1 1 `50

↵ 1 1 `41 `42 `43 `44 `45 `46 `47 + 1 `48 + 1 `49 + 1 `50 `51

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

mod 2 .

(2.13)

As every cij set corresponds in principle to a di↵erent model, simple counting gives a huge

number of 251 ⇠ 2.3 ⇥ 1015 distinct models in this class. Thus a comprehensive scan of

even this restricted class of models would take 3000 years on a single core CPU.

Nonetheless, the models share some common attributes. First the gauge group G =

SU(4)⇥SU(2)
L
⇥SU(2)

R
⇥U(1)3⇥SO(4)2⇥SO(8). Second the untwisted sector matter

states comprise six (6,1,1) representations and a number of PS singlets. The twisted sector

states that transform nontrivially under the PS gauge symmetry include the “spinorial”

states (4,2,1), (4,1,2),
�
4,2,1

�
,
�
4,1,2

�
and the “vectorial” states (1,2,2), (6,1,1).

The former arise from the sectors bIpqrs (+S) , I = 1, 2, 3 and the latter from x+bIpqrs (+S) ,

I = 1, 2, 3, where b1pqrs = b1 + p e3 + q e4 + r e5 + s e6, b2pqrs = b2 + p e1 + q e2 + r e5 + s e6,

b3pqrs = x+b1+b2+p e1+q e2+r e3+s e4, p, q, r, s 2 {0, 1}, and x = 1+S+
P6

i=1 ei+
P2

k=1 zk.

Additional exotic states transforming as (4,1,1),
�
4,1,1

�
(1,2,1) and (1,1,2) under

the observable PS gauge group may also arise from the twisted sectors bI+↵ (+z1) (+x) (+S),

I = 1, 2, 3. We denote by ne the number of these states. They carry fractional charges and

in particular they include SM singlets and doublets with ±
1
2 electric charge. The appear-

ance of these states is generic in these vacua [20]. However, as shown in [16] the class of

models under consideration includes “exophobic” vacua where all exotic fractionally charge

states receive string scale masses.
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51	independent	phases	in	these	models:	hence	search	space	is			 251 = 2⇥ 1015



This	search	space	is	(just	about)	searchable	determinisNcally	so	we	can	compare	the	two	
methods.	

The	phases	determine	the	characterisNcs	of	the	models	

Selecting amongst this huge number of vacua requires first the computation of the

spectrum and second the introduction of a set of phenomenological criteria. As illustrated

in [15] we can derive general analytic formulae regarding the main characteristics of models

in this set in terms of the GGSO phases, `i, i = 1, . . . , 51. These formulae involving ranks

of binary matrices depending on `i are too lengthy to include here. However, they can be

easily incorporated in a computer code. The model selection criteria can be either related

to the spectrum or to the couplings of the e↵ective low energy theory. The latter are

harder to implement so we will restrict to the existence of the top quark mass coupling.

As demonstrated recently [21] this requirement can be expressed explicitly in terms of

constraints on the GGSO phases,

`i = 0, i = 2, . . . , 7 , `10 = `11 = `47 = 0 , `48 = 1 , `8 = `12 , `9 = `13 . (2.14)

Let us summarise therefore the possible selection criteria. We may choose to impose:

(a) 3 complete family generations, ng = 3

(b) Existence of PS breaking Higgs, kR � 1

(c) Existence of SM Higgs doublets, nh � 1

(d) Absence of exotic fractional charge states, ne = 0

(e) Existence of top Yukawa coupling as in eq.(2.14).

A more stringent test would be to insist on minimality by imposing kR = nh = 1.

3 GAs in the fermionic string landscape

3.1 Introductory remarks

Let us now see how a GA performs in the search for viable models. First we make some

general remarks. When it comes to string phenomenology any fitness landscape is composed

not of continuous functions but of physical properties such as supersymmetry, number of

generations, Yukawa couplings and so forth. Nevertheless the question of whether the

fitness landscape defined in terms of such observables has structure remains crucial, and

one of the purposes of testing GA’s is therefore to address this issue.

To be more specific, suppose that one constructs a GA to converge on models with

three generations. To do this would require a fitness function perhaps of the form f(ng) =

e�(ng�3)2 ; that is models are weighted with a Gaussian around the desired value. Clearly

the population will coalesce around ng = 2, 3 or 4 rather than ng = 10 but as emphasised

in the Introduction, for just one parameter, this way of selecting vacua is not obviously

– 15 –

• a)+b)+c)													=		1	:	10,000	

• a)+b)+c)+d)							=		1	:	2,500,000	

• a)+b)+c)+d)+e)	=		1	:	10,000,000,000	

• determinisNcally	we	would	expect	to	have	to	construct	10	billion	models	to	find	
an	example	of	the	laoer



Figure 4. Call count the for three di↵erent classes of solutions with increasing search di�culty.

(i.e. the mean number of models one has to construct before finding a solution.) Bottom/purple:

solutions with three generations and Higgses for the Standard Model and Pati-Salam sectors. Mid-

dle/blue: solutions with three generations, Higgses for the Standard Model and Pati-Salam sectors,

and in addition no exotics. Top/yellow: solutions with three generations, Higgses for the Standard

Model and Pati-Salam sectors, no exotics and a top-Yukawa. The search di�culties are respectively

one in 104, one in 2.5⇥ 106, one in 1010.

mutation probability per bit is optimally 0.0075-0.01. This is a clear sign that the GA is

working as expected. The e�ciency drops dramatically when the mutation is turned o↵

completely (when the population is unable to discover new favourable schemata and/or

stagnates) and also when the mutation is dialled up and the search becomes e↵ectively

randomised. It is close to but slightly below the rate 1/l ⇡ 0.02 which is often claimed to

be the optimal rate [3].

Although there are only three points of reference it is worth noting that the minimal

call count appears to be increasing roughly as the log of the statistical di�culty and slower

than a power law; empirically we find call-count ⇡ 7 ⇥ 103 log(di↵/4 ⇥ 103). It would be

of interest to make this relationship more precise.

There is one further probe of the structure we can make. Instead of completely scram-

bling the genotypes after a solution is discovered, one can instead perform the same muta-

tion of 25⇥µb0grd that one does when the population stagnates. If this yields new solutions

(i.e. the population should not simply revisit the same solution) at a faster rate, then this

indicates that the solutions are “clustered” together (in terms of Hamming distance) rather

than spread uniformly. This would certainly be expected if the system is modular with dif-

ferent non-overlapping schema governing di↵erent phenomenological traits. More generally

it would imply that the solutions occupy a hypersurface in the search space.
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• As	in	toy	examples	opNmum	mutaNon	rate	=>	geneNc	algorithm	is	working	as	expected	

• GA’s	do	not	confer	much	advantage	when	the	search	is	“easy”	

• They	work	best	when	there	are	many	criteria	and	the	search	is	difficult		

	a)+b)+c)

	a)+b)+c)+d)

	a)+b)+c)+d)+e)



QAs	for	direct	model	building	



Warm-up:	solving	anomaly	condi$ons

An	 example	 TaxiCab-like	 problem	 that	 we	 can	 take	 as	 a	 “prototypical”	 consistency	
condiNon.	Consider	U(1)	extension	to	the	SM:	need	to	solve	…

for	some	reasonable	fracNonal	charges.

SAA,	NutricaN	



Derive	a	list	of	suitable	anomaly-free	extensions	(numerators	of)	with	this	Ising	encoding:

This	parNcular	search	is	a	space	of	size	

Recall:	quite	 tricky	 to	do	because	we	have	 to	encode	numbers	on	qubits	as	binaries,	and	we	
have	 to	encode	a	 sexNc	 spin-polynomial	 so	we	use	 the	“reducNon	method”:	where	we	 trade	
successive	pairs	of	qubits	for	auxiliary	qubits.	



• These	models	are	defined	in	terms	of	the	following	12	basis	vectors

Towards	direct	QA	string	model	building

Morally	 can	 actually	 be	 a	 simpler	 task	 as	 long	 as	 we	 don’t	 ask	 the	 annealer	 to	 “count”	
generaNons:	e.g.	for	the	fermionic	string	the	GSO	projecNons	for	the	spinorials	(maoer)	 in	a	
parNcular																																																model	is	possible	…

SAA,	NutricaN+Rizos,	2023



• In	a	parNcular	sector	the	GSO	constraints	turn	into	constraints	on	the	Lorentz	dot	
products	of	the	vectors.	e.g.	for	3	maoer	spinorials	we	end	up	looking	for	soluNons	to

• Similar	for	PS	Higgs	scalars	etc.	The	main	point	is	if	we	choose	sectors	(preprocessing)	
we	can	encode	the	enNre	set	of	equivalent	equaNons	for	maoer,	Higgs,	and	also	top	
Yukawa	coupling.	

where	the	U’s	entries	are	0,1	denoNng	the	sector	(in	terms	of	basis	vectors),	and	all	the	GSO	
phases	are	contained	in	a	bunch	of	phases	defined	by	the	basis	vectors:



• Finally	have	to	impose	chirality	constraints	by	hand	(post-processing)	which	thanks	to	
our	pre-processing	is	a	constraint	on	the	third	T2	compacNficaNon	plane	only	…	

where	the	exponent	is	another	funcNon	of	the	phases.	



In	general	we	note	three	things:	

• The	encoding	of	the	system	has	to	be	done	in	detail	-	(unlike	the	GA	where	your	
friend	John	comes	along	and	you	tack	your	GA	code	on	to	his	model	code)	

• Certain	things	are	hard	to	encode:	counNng	numbers	of	generaNons	for	example	

• However	for	this	problem	we	find		…



The	search	space	for	these	models	has	28	free	+-1	phases	choices.	Hence	…

We	know	there	are	about	1:10000	good	models	in	the	search	space.	We	saturate	at	1500	for	a	
parNcular	choice	of	maoer	sectors	ater	0.5M	reads.	In	other	words	only	300	reads	required	
to	find	a	good	model	instead	of	10^4.	

Caveat:	arguably	 this	 is	“GA-easy”	so	
we	 would	 not	 expect	 huge	 GA	
improvement	over	the	scan.	



GAs	for	hetero,c	line	bundle	
moduli



• CICY	threefold	X	with	line-bundles	V	=	⊕5
a=1La		to	break	the	E8	×	E8			gauge	symmetry	to	the	

Standard	Model	gauge	group	or	to	one	of	its	grand	unificaNon	embeddings.	

• DisNnct	pairs	(X,	V)	that	can	serve	as	compacNficaNon	data	virtually	unbounded	Anderson,	
ConstanNn,	Gray,	Lukas,	PalN;	Buchbinder,	ConstanNn,	Lukas		

• Considered	the	following	CYs	with	configuraNon	matrices

Hetero,c	CY	line-bundle	set-up
SAA,	ConstanNn,	Lukas,	Harvey,	NutricaN



• First	Chern	class	c1(La)	=	ka
i	Ji,	where	ka

i		are	the	components	of	the	5	integer	vectors	ka	∈	Zh	and	
(J1,...,Jh)	is	a	basis	of	H2(X,Z).	

• Assumed	Wilson	line	breaking	to	SM	on	X/Γ	

• Apply	line-bundle	cohomology	formulae	for	the	defining	integers	to	saNsfy	various	
constraints	(E8	embedding/vanishing	C1,	anomaly	cancellaNon,	SUSY/polystability,	spectrum,	
equivariance):	ConstanNn,	Lukas;	Klaewer,	Schlechter;	Larfors,	Schneider;	Brodie,	ConstanNn,	Lukas	

• e.g.	E8	embedding	=>																																																fixes	one	set	of	k’s	so	4h	integers	let	

• Then	e.g.	Spectrum:	cohomology	dimensions	must	saNsfy	…	

																10-mulNplets:	h1(X,	V	)	=	3|Γ|	;	no	10-mulNplets:	h2(X,V)=0	

								5-mulNplets:	h1(X,	∧2V	)	=	3|Γ|	+	nh,	nh	>	0	;		Higgs:	h2(X,∧2V)=nh;		

								Chiral	spectrum:	χ(X,	V	)	=	χ(X,	∧	V	)	=	3|Γ|			

• Take																																																										with	n=3	for	all	except	n=2	for	

• Search	space	is	roughly																										so	e.g.		for	5302		this	is

_

<latexit sha1_base64="aXPjSQ8zHq2fhlHG9Ynrag8Km/Q=">AAAB83icbVBNS8NAEJ3Urxq/qh69LBahIpSkBPVY9OKxgv2ANpbNdtMu3WzC7kYooX/DiwdFvPpnvPlv3LY5aOuDgcd7M8zMCxLOlHacb6uwtr6xuVXctnd29/YPSodHLRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0H49uZ336iUrFYPOhJQv0IDwULGcHaSD279ph5o4q4cM+n/VLZqTpzoFXi5qQMORr90ldvEJM0okITjpXquk6i/QxLzQinU7uXKppgMsZD2jVU4IgqP5vfPEVnRhmgMJamhEZz9fdEhiOlJlFgOiOsR2rZm4n/ed1Uh9d+xkSSairIYlGYcqRjNAsADZikRPOJIZhIZm5FZIQlJtrEZJsQ3OWXV0mrVnUvq969V67f5HEU4QROoQIuXEEd7qABTSCQwDO8wpuVWi/Wu/WxaC1Y+cwx/IH1+QPVb5BE</latexit>

24h(n+1)
<latexit sha1_base64="KZb49VIm5UE/zgME79rJq4NnEPw=">AAAB73icbVDLSgNBEOzxGddX1KOXwSB4Crsh+LgFvXiMYB6QrGF2MpsMmZ1dZ2aFsOQnvHhQxKu/482/cZLsQRMLGoqqbrq7gkRwbVz3G62srq1vbBa2nO2d3b394sFhU8epoqxBYxGrdkA0E1yyhuFGsHaiGIkCwVrB6Gbqt56Y0jyW92acMD8iA8lDTomxUtvx3IescjXpFUtu2Z0BLxMvJyXIUe8Vv7r9mKYRk4YKonXHcxPjZ0QZTgWbON1Us4TQERmwjqWSREz72ezeCT61Sh+HsbIlDZ6pvycyEmk9jgLbGREz1IveVPzP66QmvPQzLpPUMEnni8JUYBPj6fO4zxWjRowtIVRxeyumQ6IINTYix4bgLb68TJqVsndert5VS7XrPI4CHMMJnIEHF1CDW6hDAygIeIZXeEOP6AW9o4956wrKZ47gD9DnD4Z7jv8=</latexit>
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Searched	for	N	=	1	supersymmetric	SU(5)	GUTs	with	four	addiNonal	Green-	Schwarz	
anomalous	U(1)s,	three	(5,10)	generaNons,	no	exoNc	10	mulNplets	and	at	least	one	
vector-like	5−5	pair	to	account	for	the	Higgs	fields.

_ _
_

|Γ|	=	4	and	h1,1	(X7447	)	=	5

• Horizontal	axis	represents	the	number	of	geneNc	episodes,	in	each	episode	a	
number	of	90,000	states	being	visited



Searched	for	N	=	1	supersymmetric	SU(5)	GUTs	with	four	addiNonal	Green-	Schwarz	
anomalous	U(1)s,	three	(5,10)	generaNons,	no	exoNc	10	mulNplets	and	at	least	one	
vector-like	5−5	pair	to	account	for	the	Higgs	fields.

_ _
_

X4071	with	|Γ|	=	2	and	h1,1	(X4071	)	=	7	



Searched	for	N	=	1	supersymmetric	SU(5)	GUTs	with	four	addiNonal	Green-	Schwarz	
anomalous	U(1)s,	three	(5,10)	generaNons,	no	exoNc	10	mulNplets	and	at	least	one	
vector-like	5−5	pair	to	account	for	the	Higgs	fields.

_ _
_

• fracNon	of	environment	explored	is	Nny	



GAs	in	CYs	and	GAs	versus	
reinforcement	learning	



• First	comparison	of	GA	versus	RL	in	string	context	(NB	techniques	both	work	with	“environment”)	

• Consider	monad	bundles	on	Complete	IntersecNon	Calabi	Yaus.	Kachru;	Anderson;	Anderson,	He,	Lukas;	
Anderson,	Gray,	He,	Lukas;	He,	Lee,	Lukas	

• Considered	the	following	two	kinds	of	CICY	(bi-cubic	and	triple	trilinear	respecNvely)	with	
configuraNon	matrices,	where	indices	are	h11,	h21,	and	Euler	number:	

• Models	constructed	by	monad	bundles	on	the	CICY	defining	the	E8xE8	background:	constructed	
from	two	line-bundle	sums,	B	and	C:	in	the	end	boils	down	to	matrix	of	integers	(where	k=1,..,h11):			

GAs	versus	reinforcement	learning
SAA,	ConstanNn,	Lukas,	Harvey



• Similarly	all	the	phenomenological	properNes	(e.g.	number	of	generaNons)	determined	by	
these	numbers	via	(several)	index	theorems.		

• Search	for	“perfect-models”	(aka	“terminal	states”):	require	SM-like	theories	(i.e.	SO(10)	
GUT	from	broken	E8,	with	3	generaNons).		

• So	what	is	the	size	of	search	space?	If	we	take	

• Allowing	say	10	values	per	entry,	that	is																																																																																																							
with	say	h11=3	it	again	becomes	huge	very	quickly!		

• For	the	GA	we	simply	encode	these	integers	as	a	single	binary	string	and	operate	as	before.	
Used	quite	large	populaNon	=	250.	

• In	both	RL	and	GA	we	use	the	same	funcNon	to	stand	for	the	reward	/	fitness,	based	on	the	
number	of	criteria	that	are	saNsfied.

ConstanNn,	Lukas,	Harvey



Reinforcement	learning	vs	GAs	for	these	models

These	models	were	already	shown	to	be	amenable	to	RL.		 ConstanNn,	Lukas,	Harvey

using	REINFORCE	…	



Reinforcement	learning	vs	GAs	for	these	models

These	models	were	already	shown	to	be	amenable	to	RL.		

Find	good	performance	ater	a	long	training	Nme:	typical	
run	on	the	(6,2)	bi-cubic	with	

for	which	the	search	space	is																										

ConstanNn,	Lukas,	Harvey

The	GA	is	much	faster	to	the	first	soluNons!	Note	only	50K	states	visited:	



Reinforcement	learning	vs	GAs	for	these	models

Redundancy:	The	methods	behave	differently.	GA’s	tend	to	produce	a	lot	of	redundancy	
(equivalent	perfect	states)	due	to	convergence,	but	are	sNll	more	efficient:		

GA:	1	Core	day

RL:	35	Core	days



Reinforcement	learning	vs	GAs	for	these	models

Satura$on:	ater	35	core	days	the	RL	produced	643	inequivalent	perfect	states.	Ater	10	
core	days	the	GA	saturated	at	639	inequivalent	perfect	states.	

NB:	at	the	beginning	they	cover	different	regions	(Sammon	mapping),	so	an	important	
side-effect	is	that	we	have	evidence	almost	all	possibili@es	are	saturated,	for	this	
choice	of	hyper-parameters	.		

About	50	models	in	complement	(i.e.	689	models	in	total)



Reinforcement	learning	vs	GAs	for	these	models

(6,2)	triple	trilinear.	Keep	same	domains	of	defining	integers,	but	now	
h11=3	gives	search	space																								is	seven	orders	of	magnitude	larger.

GA	in	a	given	run	takes	only	twice	as	many	generaNons	to	reach	the	saturated	fitness.



Gene,c	Quantum	Annealing	



Gene,c	quantum	annealing	(GQA)

Diagram for classical GA.

Recall	flow-chart	for	Gene,c	Algorithms



Diagram for GQAA.

SAA,	NutricaN,	Spannowsky,	quant-ph	2209.07455

Annealer	allows	us	to	instead	define	a	populaNon	of	conNnuous	genotypes	in	the	h:

How	can	we	take	advantage	of	Quantum	Annealing	without		
Ising	encoding	the	en,re	environment?

“Nepotism”

https://arxiv.org/abs/2209.07455


Diagram for GQAA.

Work	with	conNnuous	genotypes	in	the	h:

SAA,	NutricaN,	Spannowsky,	quant-ph	2209.07455

https://arxiv.org/abs/2209.07455


Diagram for GQAA.

Work	with	conNnuous	genotypes	in	the	h:
Connect	 the	 populaNon	 together	
using	 the	 J	 couplings:	 example	
topology

SAA,	NutricaN,	Spannowsky,	quant-ph	2209.07455

“Polyandry”

https://arxiv.org/abs/2209.07455


Results

SAA,	NutricaN,	Spannowsky,	2022
Notation:

<latexit sha1_base64="e4Mz/5qtpXjqK+cSsePzRUi4d7g=">AAACK3icbZDLSgMxFIYz9VbrbdSlm2ARKpYyI0XdCKVuXCpYFXoZMmmmDZNkxiQjDqXzPG58FRe68IJb38O0dqHVA4GP/z8nyfn9mFGlHefNys3Mzs0v5BcLS8srq2v2+salihKJSQNHLJLXPlKEUUEammpGrmNJEPcZufLDk5F/dUukopG40GlM2hz1BA0oRtpInl0vhWVeFrswa5GbhN5m8M5zOyHcg61upBU3cOdxI2THGUynrdQTndCzi07FGRf8C+4EimBSZ579ZC7ACSdCY4aUarpOrNsDJDXFjAwLrUSRGOEQ9UjToECcqPZgvOsQ7hilC4NImiM0HKs/JwaIK5Vy33RypPtq2huJ/3nNRAdH7QEVcaKJwN8PBQmDOoKj4GCXSoI1Sw0gLKn5K8R9JBHWJt6CCcGdXvkvXO5X3INK9bxarNUnceTBFtgGJeCCQ1ADp+AMNAAG9+ARvIBX68F6tt6tj+/WnDWZ2QS/yvr8ApsjpOM=</latexit>

(k,m, n) ⌘ xk
1 + · · ·+ xk

m = yk1 + · · ·+ ykn



Results	for	line	bundle	models	
SAA,	ConstanNn,	Lukas,	Harvey,	NutricaN



• GA’s are a strikingly effective search tool for finding favourable string vacua

• Note we did not yet work hard to optimise the GA in the RL/GA study. (Just 
single point cross-over, not particularly optimising mutation rate, no creep 
mutation etc)

• Results suggest estimates of string-landscape size are less meaningful than 
fitness-distance correlation (i.e. SM is not a needle in a haystack)

• QAs (and also simulated annealing) are strikingly similar to string 
configurations. 

• However imposing phenomenological constraints directly can be more tricky  
and require post-pre-processing for them 

• Combined approaches, GA+Clustering+Nelder Mead or QGAA hold 
promise.

• Adiabatic Quantum Computing has not yet seen much application 

Conclusions	…


